
Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

A Game-Theoretic Method to Efficiently Assess the Vulnerability of a 

Dynamic Transportation Network 
Venkateswaran Shekara, Lance Fiondellaa,  

Samrat Chatterjeeb, and Mahantesh Halappanavarb 
a University of Massachusetts Dartmouth, USA  

b Pacific Northwest National Laboratory, Richland, USA 

 

 

 

Abstract: Many transportation network vulnerability assessment methods are based on the static traffic 

assignment problem, which determines the distribution of traffic demand over a network for a static 

snapshot in time. However, transportation networks are dynamic because demand is time-varying. This 

paper proposes a mixed strategy, stochastic game-theoretic approach to determine the relative criticality 

of links in different time intervals. We quantitatively compare the results of the proposed approach with 

deterministic methods that do not scale efficiently. Our results indicate that the criticalities identified by 

the game-theoretic approach are strongly correlated with the slower deterministic method, suggesting 

that the proposed approach will enable efficient vulnerability assessment of dynamic transportation 

networks. 
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1.  INTRODUCTION 
 

Transportation networks play a critical role in the smooth functioning of a nation’s economy and 

ensuring its security. Moreover, these networks are critical to the Emergency Services Sector (ESS), 

which includes a system of prevention, preparedness, response, and recovery from natural and man-

made disasters. Areas with high population densities are of particular concern due to the effect of 

disruptions on continuity of services and the well-being of the population. Thus, to prevent major 

disruptions, quantifying transportation network vulnerability and identifying critical links that may be 

the prime targets for attacks is essential. Transportation networks are complex because their utilization 

throughout a 24-hour period is dynamic, suggesting that vulnerability is a function of both location and 

time. Several previous studies have proposed transportation network vulnerability assessment methods 

[1] and strategies to quantitatively enhance resilience. Commonly used techniques include traditional 

optimization methods and game theoretic approaches. However, most previous approaches treat 

transportation networks as static graphs, assessing structural vulnerability, but do not consider their 

time-varying dynamics.  

 

Optimization methods include the work of Jenelius et al. [2] who proposed methods to answer questions 

such as “Which regions are most susceptible to disruption in the transportation system?” by defining 

“exposure,” where a node is vulnerable if the loss of a small number of links significantly reduces the 

accessibility to that node. Murray-Tuite and Mahmassani [3] developed a vulnerability index to consider 

traffic flow, link capacities, travel times, and the availability of alternate routes. Scott et al. [4] proposed 

a network robustness index (NRI), which is computed as the increase in user equilibrium travel time 

when a specific link is closed. Sullivan et al. [5] extended this NRI to the case where links are only 

partially degraded. Nagurney and Qiang [6] also studied network robustness but focused on the travel 

cost implications. In [7], Demšar et al. combined graph modeling with connectivity analysis as well as 

topological measures to quantify the vulnerability of a network’s elements and identify critical locations 

within the network. 

 

Examples of game theoretic approaches include Bell and Cassir [8] who presented a deterministic user 

equilibrium traffic assignment that is equivalent to the mixed-strategy Nash equilibrium of an n-player, 

non-cooperative game. Bell [9] proposed a mixed strategy stochastic game between a router seeking 

minimum cost paths for vehicles and a tester attempting to maximize the cost of these trips. Murray-

Tuite and Mahmassani [3] developed a bi-level non-zero-sum game between an attacker and the traffic 
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management agency to quantify vulnerability. Wang et al. [10] incorporated static traffic assignment 

and the corresponding concepts of network congestion into a two player attacker-defender game, sorting 

link attack and defense strategies and interpreting them as priority lists of the most critical links. 

Fiondella et al. [11] combine game theoretic vulnerability assessment and metaheuristic optimization to 

allocate limited resources to defend the U.S. high-speed rail network as it expands in a discrete sequence 

of times steps. 

 

The past research discussed above was performed in the context of Static Traffic Assignment (STA) 

methods, which only consider a snapshot of the network in time and does not account for the time-

varying nature of traffic demand. To study the criticality of links as a function of time Dynamic Traffic 

Assignment (DTA) methods explicitly model travel demand as a function of time which allow dynamic 

vulnerability mitigation strategies that consider where and when to deploy defenses within the network. 

Compared to STA research, relatively few studies have considered dynamic vulnerability strategies. For 

example, Duanmu et al. [12] assessed the utility of effective information dissemination on evacuation, 

but limited analysis to a case study with three primary evacuation routes. Shekar et al. [13] employed 

dynamic transportation simulation methods as the basis of a systematic approach, which disconnects 

one link at a time to measure the increase in network travel time over a nominal scenario where all links 

work. However, this approach was difficult to scale because a simulation is required for each edge of a 

network. Moreover, individual simulations require additional time for larger networks. 

 

To advance dynamic transportation network vulnerability research, this paper presents a game-theoretic 

method that uses dynamic transportation simulation. Game theory enables the consideration of each 

link/time interval in a single simulation, effectively achieving parallelism that scales arbitrarily with the 

size of the network. To avoid the complexity associated with games on graphs, we implemented the 

method of successive averages to ensure that the game converges. Moreover, we quantitatively compare 

the proposed approach with the deterministic method [13]. Our results indicate that the game-theoretic 

approach achieves strong correlation with the deterministic approach, suggesting that it may be a viable 

alternative to improving the scalability of dynamic transportation network vulnerability assessment 

without compromising accuracy. 

 

The remainder of the paper is organized as follows. Section II describes a game-theoretic method to 

assess the vulnerability of a dynamic transportation network, including its formulation and algorithm. 

Section III illustrates the method through a simple network representing an evacuation scenario. Section 

IV provides conclusions and identifies future research. 

 

2.  GAME THEORETIC APPROACH 
 

This section presents a two-player game to assess the vulnerability of a dynamic transportation network, 

where the traffic management authority and attacker are referred to as the “router” and “tester” 

respectively. The game is iterative with the router and tester revising their strategies in odd and even 

turns. The router seeks to identify a strategy to distribute traffic over the links of the network in a manner 

that ensures the vehicles reach their destinations in a timely fashion but also minimizes their risk 

exposure. Conversely, the tester wishes to develop an attack strategy that maximally disrupts the smooth 

flow of traffic. 

 

The game is one of perfect knowledge in which the latest strategy of the adversary becomes immediately 

available to its opponent. For the sake of analysis, this is pessimistic with respect to the defender’s goals 

in the sense that the tester has all inside information in real time and is therefore able to counteract the 

router’s most recent attempt to work around the tester. Similarly, the assumption of perfect knowledge 

is optimistic in the sense that the router is aware of how the tester will revise its attack strategy. In 

practice, this game can be thought of as an objective exercise between the defender and how they believe 

a rational adversary would behave. This requires accurate characterization of the tester. The combination 

of alternating turns and perfect knowledge can lead to cycles in the strategies selected by the router and 

tester, which results in lack of convergence in the sequence of revisions to the strategies of the 

adversaries. To avoid this, the game implements the method of successive averages in which greater 



Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

emphasis is placed on earlier iterations. This places greater weight on earlier iterations that reflect the 

most likely strategies, including those that are most likely to be repeated because of the alternating game 

play. 

 

2.1. Game Formulation 

 

The transportation network is represented as a directed graph 𝐺(𝑉, 𝐸), where 𝑉and 𝐸 are the sets of 

vertices and edges which respectively represent the intersections and road segments. Trips are 

characterized by the demand profile 𝐷|𝑉|×|𝑉|(𝑡), which is a |𝑉| × |𝑉| dimension matrix and entry 𝐷𝑖,𝑗(𝑡) 

indicates the number of vehicles commencing travel at integer time steps 𝑡 ∈ (0, 𝑇max) from vertex 𝑖 
with destination 𝑗. For the sake of analysis, the simulation is divided into 𝑘 time intervals of equal length 

 

𝛥𝑇 = 〈𝛥𝑡1, 𝛥𝑡2, … , 𝛥𝑡𝑖, … , 𝛥𝑡𝑘〉, 
 
which represent the times at which the tester can disable a particular link. 

 

Disrupting a link renders it unavailable for the entire duration of the time interval 𝛥𝑡𝑖 and the link is 

restored to full capacity at the beginning of the next interval 𝛥𝑡𝑖+1 . This approach allows us to 

objectively compare disruptions of equal length at different times and locations to assess their relative 

criticality with respect to the resulting increase in travel time. It also allows for direct comparison with 

our past method [13] which implemented a deterministic approach that disabled each link individually 

and simulated the network to identify the increase in travel time over a baseline where all links are 

available. The reader may note that the assumption of a single disruption at uniform and non-overlapping 

time intervals imposed on the deterministic and proposed game-theoretic approach can be relaxed and 

that it is possible to consider more complex scenarios in which there is more than one disruption and 

these disruptions are of non-uniform length with arbitrary recovery profile back the nominal case, where 

the link returns to the state where it is capable of conveying the volume of traffic prior to disruption.  

Equation (1) represents the mini-max formulation between the router and the tester. 

 
𝑚𝑖𝑛

𝛾
 𝑚𝑎𝑥

𝜌
 𝜇𝑛(𝛾, 𝜌) = ∑ ∑ 𝛾𝑒,𝑖

𝑛 𝜌𝑒,𝑖
𝑛 𝜏𝑒,𝑖

𝑛
𝑒∈𝐸𝑖∈𝛥𝑇     (1) 

 

where  𝜇𝑛 represents the system vulnerability in the nth iteration, which is computed as the product of 

(i) the usage probability of edge e in interval i and iteration n (𝛾𝑒,𝑖
𝑛 ) (ii) the corresponding link attack 

probability (𝜌𝑒,𝑖
𝑛 ), and (iii) heuristic link travel cost (𝜏𝑒,𝑖

𝑛 ). This product is summed over all edges and 

time intervals, which quantifies the contribution of each combination of location and time to network 

vulnerability. 

Equation (1) is subject to the following constraints 

 
∑ ∑ 𝛾𝑒,𝑖𝑒∈𝐸𝑖∈𝛥𝑇 = 1      (2) 

∑ ∑ 𝜌𝑒,𝑖𝑒∈𝐸𝑖∈𝛥𝑇 = 1      (3) 

 

which may be interpreted as the router and tester strategies respectively because these vectors quantify 

the probability that the router and attacker use or attack each link in any one of the specified time 

intervals. Thus, these strategies consider both where potential vulnerabilities may exist as well as when 

they arise. 

 

2.2. Algorithm 

 
Algorithm 1 provides the pseudo code of the proposed game-theoretic approach to assess the 

vulnerability of a dynamic transportation network. The router begins the game by assigning vehicles to 

the network in a manner that minimizes travel time. This approach represents the ideal scenario in which 
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the router attempts to solve the standard dynamic transportation network traffic assignment problem, 

but disregards the presence of a malicious tester. To maximize disruption, the tester observes the state 

of the network under these nominal conditions and then determines attack probabilities. In subsequent 

iterations, the router and tester revise their path selection and attack strategies until convergence is 

achieved. 

  
Algorithm 1 Game-theoretic transportation network vulnerability assessment algorithm 

  
Require: Road network 𝐺 with 𝑣 vertices and 𝑒 edges  

Require: Dynamic traffic demand data profile 𝐷|𝑉|×|𝑉|(𝑡) 

Require: Array of time intervals ∆𝑇 

Require: Maximum iterations 𝑁𝑚𝑎𝑥 

1:  Initialize iteration 𝑛 =  0 

2:  Initialize system vulnerability µ0 = 0 

3:  for 𝑖 =  1 to 𝑘 do 

4: for 𝑒 =  1 to |𝐸| do 

5:   𝜏𝑒,𝑖
1 =  𝐶𝑒

− 

6:  end for 

7:  end for 

8:  do 

9:   𝑛 =  𝑛 +  1 

10:  𝑓𝑒,𝑖
𝑛 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒(𝐺, 𝜏𝑒,𝑖

𝑛 ) 

11:  for 𝑖 =  1 𝑡𝑜 𝑘 do 

12:   for 𝑒 =  1 𝑡𝑜 |𝐸| do 

13:    Calculate usage probability 𝛾𝑒,𝑖
𝑛  // Eq (4) 

14:    Calculate attack probability 𝜌𝑒,𝑖
𝑛 // Eq (5) 

15:    Calculate link vulnerability  

    𝜇𝑒,𝑖
𝑛 = 𝛾𝑒,𝑖

𝑛 × 𝜌𝑒,𝑖
𝑛 × 𝜏𝑒,𝑖

𝑛  

16:    Update system vulnerability 𝜇𝑛 =  𝜇𝑛 +   𝜇𝑒,𝑖
𝑛 

17:    Update s-Expected link cost 𝑆𝑒,𝑖
𝑛  // Eq (6) 

18:    𝜏𝑒,𝑖
𝑛+1 = 𝑀𝑆𝐴(𝑆𝑒,𝑖

𝑛+1, 𝜏𝑒,𝑖
𝑛 ) // Eq (8) 

19:   end for 

20:  end for 

21: while (|𝜇𝑛 −  𝜇𝑛−1|> 𝜀) 𝑜𝑟 (𝑛 < 𝑁max)   

 
 

Algorithm Input 
Inputs to the algorithm include the graph of the road network, 𝐺(𝑉, 𝐸) with 𝑣 vertices and 𝑒 edges, 

dynamic traffic demand profile 𝐷|𝑉|×|𝑉|(𝑡), an array of time intervals 𝛥𝑇, and the maximum number of 

turns to play the game, 𝑁. 

 

Steps 1-7: Initialization 
Before starting the game, all parameters are initialized as shown in steps one through seven. System 

vulnerability in the zeroth iteration 𝜇𝑖
0  is initialized to zero to prevent the game from converging 

prematurely after the first iteration. For each time interval 𝑖 and edge 𝑒, the link costs, 𝜏𝑒,𝑖
1  are initialized 

to the free flow travel time denoted 𝐶𝑒
−. 

 

Steps 9-10: Run simulation 

The network is simulated using the present link weights, 𝜏𝑒,𝑖
𝑛 , which produces the traffic (number of 

vehicles per second) on edge 𝑒 during time interval 𝑖 in the 𝑛𝑡ℎ iteration (𝑓𝑒,𝑖
𝑛 ). 
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Step 13: Calculate link usage probabilities 

The link usage probability is 

𝛾𝑒,𝑖
𝑛 =

𝑓𝑒,𝑖
𝑛

∑ ∑ 𝑓𝑒,𝑖
𝑛

𝑒∈𝐸𝑖∈𝛥𝑇
     (4) 

which is the ratio of traffic on edge 𝑒 during time interval 𝑖 in the 𝑛𝑡ℎ iteration over the sum of the 

traffic on all edges in all time intervals in the 𝑛𝑡ℎ iteration. 

 

Step 14: Calculate tester attack probabilities 

Based on the link usage probabilities determined in the previous step, the tester formulates a plan of 

attack by assigning link failure probabilities to maximize travel time disruption. Thus, the link attack 

probability is 

𝜌𝑒,𝑖
𝑛 =

𝜏𝑒,𝑖
𝑛 ×𝛾𝑒,𝑖

𝑛

∑ ∑ (𝜏𝑒,𝑖
𝑛 ×𝛾𝑒,𝑖

𝑛 )𝒆∈𝑬𝒊∈𝜟𝑻
    (5) 

which is the ratio of the product of link cost (𝜏𝑒,𝑖
𝑛 ) and link usage (𝛾𝑒,𝑖

𝑛 ) on edge 𝑒 during time interval 

𝑖 in the 𝑛𝑡ℎ iteration over the sum of these terms on all edges in all time intervals in the 𝑛𝑡ℎ iteration. 

 

Step 15, 16: Update system vulnerability 

The vulnerability for link 𝑒 during interval 𝑖 in iteration 𝑛 (𝜇𝑒,𝑖
𝑛 ) is computed according to Equation (1) 

as the product of link usage, attack probability, and link cost. 

 

Step 17: Calculate s-Expected link cost 

The s-expected cost of each link and time interval is revised for use in iteration 𝑛 +  1 according to 

the attack probabilities determined by Equation (5). 

 

𝑆𝑒,𝑖
𝑛+1 = ((1 − 𝜌𝑒,𝑖

𝑛 ) × 𝐶𝑒
−) + (𝜌𝑒,𝑖

𝑛 × 𝐶𝑒
+)    (6) 

 

where 𝐶𝑒
− is the free flow travel time cost and 𝐶𝑒

+ is the link’s cost in the disrupted state 

 

𝐶𝑒
𝑛 = {

𝐶𝑒
− if 𝜌𝑒

𝑛 = 0

𝐶𝑒
+ = 𝛽 × |𝐸| × 𝐶𝑒

− if 𝜌𝑒
𝑛 > 0

   (7) 

 

Here, 𝛽 is a penalty coefficient (risk aversion factor) and |𝐸| is the number of links in the network. 

The term |𝐸| is included to normalize across graphs of different sizes and 𝛽 > 1/|𝐸| ensures that 

𝐶𝑒
+ >  𝐶𝑒

−. 

 

Step 18: Calculate s-Expected Link Cost with Method of Successive Averages 

To ensure that convergence, it is necessary to reduce the impact of periodically cycling through a 

sequence of attack and defense strategies. This is accomplished by applying the method of successive 

averages (MSA), which assigns greater weight to the tester’s earlier strategies and the router’s 

response. 

𝜏𝑒,𝑖
𝑛+1 =

1

𝑛𝛼 𝑆𝑒,𝑖
𝑛+1 + (1 −

1

𝑛𝛼) 𝜏𝑒,𝑖
𝑛     (8) 

where a value of 𝛼 > 1.0 accelerates the rate of convergence. Note lim
𝑛→∞

 𝜏𝑒,𝑖
𝑛+1 −  𝜏𝑒,𝑖

𝑛 = 0, and 

convergence will occur for some finite 𝑛 > 𝑁. 

 

Step 21: Convergence Criteria 

The game stops when the difference in system vulnerability of two consecutive iterations determined 

by Equation (1) is less than a specified threshold ∆𝜇 = |𝜇𝑛 − 𝜇𝑛−1| < 𝜀 or if the number of iterations 

exceeds a user defined value 𝑁𝑚𝑎𝑥. 
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3.  ILLUSTRATION 

 
The game theoretic dynamic vulnerability assessment model is demonstrated through a case study of a 

simple network accompanied by a detailed description of the algorithm. Figure 1 shows the structure 

of the simple network used to demonstrate the approach. 

 

Figure 1 Structure of simple network 

 
 
The network 𝐺 consists of 𝑣 =  6 vertices (nodes) and 𝑒 =  13 directed edges (links), which are 

labeled with their distance in meters. The speed limit on each edge was set to 30 miles/hour (13.41 

m/s). 

 

To simulate an evacuation scenario, a total of 500 vehicles are considered in which trips are generated 

at the rate of one vehicle every two time steps (𝑡 <  1,000) originating from node zero with the goal of 

reaching node five. Thus, the nonzero entries of the demand matrix are 𝑑0,5(2𝑡)  =  1, (0 ≤  𝑡 ≤
 998) . The array of time intervals is ∆𝑇 =  (∆𝑡1  =  (0, 500), ∆𝑡2  =  (500, 1000), ∆𝑡3  =
 (1000, 1500)) . The risk aversion factor is set to 𝛽 =  1 , the convergence criterion 𝜀 =  0.01 , 

maximum number of iterations 𝑁𝑚𝑎𝑥 = 250, and convergence factor 𝛼 =  2.0. 

 

3.1. Iterations one to three 

 

Table 1 shows the values of the link cost 𝜏𝑒 , router’s link use probability 𝛾𝑒 , and tester’s attack 

probability 𝜌𝑒 in the first time interval ∆𝑡1 through the first three iterations. Table 1 indicates that the 

link travel time in the first iteration (𝜏𝑒) is simply the free flow travel time, as noted in Section 2. The 

reader may note that the calculations are computed over each time interval ∆𝑡1 through ∆𝑡3, which is 

necessary for the method to quantify the relative criticality of each pair of link and time interval. 

However, the table and discussion have been limited to ∆𝑡1 for detailed explanation of the algorithm. 

 

Simulation with these link travel times produces the number of vehicles on edge e during the first time 

interval of the first iteration (𝑓𝑒,1
1 ), which are subsequently used to compute the router probabilities and 

attacker probabilities with Equations (4) and (5) respectively. For example, both links 𝐿0,1 and 𝐿0,2 

possess travel cost 73.5399. However, during simulation, structural asymmetry in the graph produces 

unequal amounts of traffic on these two edges in the interval ∆𝑡1 such that 𝑓(0,1),∆𝑡1

1 =  10.626  

vehicles/sec and 𝑓(0,2),∆𝑡1

1 =  15.254  vehicles/sec respectively. Moreover, the total flow over all 

intervals and links in the network is 𝑓1 =  212.752 . Thus, 𝛾(0,1),∆𝑡1

1 =
10.626

212.752
= 0.0499   and 

𝛾(0,2),∆𝑡1

1 =
15.254

212.752
= 0.0717 , while 𝜌(0,1),∆𝑡1

1 =
73.5399×0.0499

69.52
= 0.0528  and 𝜌(0,2),∆𝑡1

1 =
73.5399×0.0717

69.52
= 0.0758. This is followed by the computation of system vulnerability shown in Equation 

(1). Therefore the vulnerability of link 𝐿0,1  becomes 𝜇(0,1),∆𝑡1

1 =  𝜏(0,1),∆𝑡1

1 × 𝛾(0,1),∆𝑡1

1 ×  𝜌(0,1),∆𝑡1

1 =

73.5399 × 0.0499 × 0.0528 = 0.3997. 
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Equation (6) is used to calculate the s-expected link costs for the next iteration. For example, for the link 

from zero to one, 𝑆(0,1),∆𝑡1

2 = (1 − 0.0528) × 73.5399 + 0.0528 × 1 × 13 × 73.5399 =

120.1637 and 𝑆(0,2),∆𝑡1

2 = 140.4437 for the link from zero to two. Subsequently, the MSA of the s-

expected cost is calculated according to Equation (8) such that 𝜏(0,1),∆𝑡1

2 = (
1

12) × 120.1637 (1 −
1

12) ×

73.5399 = 120.1637 and 𝜏(0,2),∆𝑡1

2 = 140.4437. Thus, the router’s preference to utilize 𝐿0,1 and the 

attacker’s interest in attacking this link coupled with the router’s risk aversion increases the cost of 𝐿0,1, 

but not as much as the router’s aversion to 𝐿0,2. 

 

In the second iteration, the router sends all traffic through 𝐿0,1, avoiding 𝐿0,2 altogether. This occurs 

because the shortest path from node zero to five through 𝐿0,1 is lower than the shortest path through 𝐿0,2 

and the demand pattern 𝐷(𝑡) generates a single trip every two time steps. Thus, the combination of link 

cost and travel demand pattern leads the router to prefer 𝐿0,1 over 𝐿0,2 and the attacker revises their 

strategy accordingly, concentrating their attack probability on 𝐿0,1. However, the method of successive 

averages retains memory of the threat to 𝐿0,2 in the first iteration such that 𝜏(0,2),∆𝑡1

3 does not simply 

revert to the free flow travel time. As a result, in iteration three the router shifts most but not all of the 

traffic from 𝐿0,1 to 𝐿0,2. 

 

Table 1: Link cost, link use probability, and link failure probability, in time interval t1 

Link Iteration 1 Iteration 2 Iteration 3 

Name 𝜏𝑒,1
1  𝛾𝑒,1

1  𝜌𝑒,1
1  𝜏𝑒,1

2  𝛾𝑒,1
2  𝜌𝑒,1

2  𝜏𝑒,1
3  𝛾𝑒,1

3  𝜌𝑒,1
3  

L0,1 73.539

9 

0.0499 0.0528 120.1637 0.1141 0.1380 138.9500 0.0188 0.0231 

L0,2 73.539

9 

0.0717 0.0758 140.4437 0.0000 0.0000 123.7100 0.1017 0.1116 

L1,0 73.539

9 

0.0000 0.0000 73.5399 0.0000 0.0000 73.5400 0.0000 0.0000 

L1,2 88.534

7 

0.0000 0.0000 88.2923 0.0000 0.0000 88.2900 0.0000 0.0000 

L1,3 59.194

6 

0.0374 0.0319 81.8295 0.0794 0.0654 87.7800 0.0220 0.0171 

L2,0 73.539

9 

0.0000 0.0000 73.5399 0.0000 0.0000 73.5400 0.0000 0.0000 

L2,4 59.194

6 

0.0443 0.0377 85.9972 0.0034 0.0030 79.8300 0.0733 0.0520 

L3,4 88.534

7 

0.0000 0.0000 88.5347 0.0000 0.0000 88.5300 0.0000 0.0000 

L3,5 73.795

7 

0.0458 0.0486 116.8651 0.0892 0.1049 129.3300 0.0451 0.0518 

L4,2 59.194

6 

0.0000 0.0000 59.1946 0.0000 0.0000 59.1900 0.0000 0.0000 

L4,3 88.534

7 

0.0000 0.0000 88.5347 0.0000 0.0000 88.5300 0.0000 0.0000 

L4,5 73.795

7 

0.0403 0.0428 111.6604 0.0172 0.0193 106.4700 0.0749 0.0708 

L5,3 73.795

7 

0.0000 0.0000 73.7957 0.0000 0.0000 73.8000 0.0000 0.0000 

 

 

 

3.2. Iterations through convergence 

 

Figure 2 shows the network vulnerability in each iteration as a step function as well as a moving average 

to illustrate the trend. 
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Figure 2 Network vulnerability of simple network 

 
 

While there are large variations in system vulnerability in successive iterations, the fluctuations become 

smaller after approximately the 80𝑡ℎ iteration and the moving average indicates the underlying trend is 

decreasing.  

 

Figure 3 Change in network vulnerability (𝜟𝝁) 

 
 

Figure 3 provides an alternative view, showing the change in system vulnerability (∆𝜇)  between 

successive iterations as well as a moving average. Similar to Figure 2, ∆𝜇 fluctuates significantly. 

However, after the 60𝑡ℎ iteration, this difference never exceeds 2.0 and after the 80𝑡ℎ it never exceeds 

1.0, converging in the 94𝑡ℎ iteration when ∆𝜇 <  𝜀 = 0.01. The moving average illustrates this more 

clearly, indicating a visibly decreasing trend after the 60𝑡ℎ  iteration. Convergence occurs because 

applying the method of successive averages to the s-expected costs places less emphasis on the later 

defense strategies, producing smaller changes in network vulnerability. 

 

To provide a more detailed view of the iterations of the game and the influence of the method of 

successive averages on convergence, Figure 4 shows a plot of the vulnerability of links 𝐿0,1 and 𝐿0,2.  
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Figure 4 Link Vulnerability at interval 𝜟𝒕𝟏 

 
 

Link vulnerability oscillates, in the first few iterations because the link cost lacks sufficient memory of 

the attacker’s alternating strategy. There is greater stability between iterations four and ten because the 

router has observed the alternating attacker strategy enough to avoid subsequent oscillation. However, 

oscillation begins again at iteration 11 and continues to iteration 80 after which the vulnerability 

stabilizes until convergence. 

 

To explain the oscillatory behavior in the link vulnerability, recall that link cost 𝜏  is a term in 

vulnerability, 𝜇 = 𝜏 × 𝛾 × 𝜌 . Figure 5 shows the MSA of the s-expected links cost 𝜏(0,1),∆𝑡1

𝑛 and 

𝜏(0,2),∆𝑡1

𝑛 .  

 
Figure 5 MSA of s-expected link costs at interval 𝜟𝒕𝟏 

 
 

The black horizontal lines at 𝜇 = 127.77  and 𝜇 = 135.64 indicate the value of link costs at 

convergence for links 𝐿0,1 and 𝐿0,2 respectively. In the first iteration the router overcompensates by 

shifting all traffic from 𝐿0,2 to 𝐿0,1 and the attacker reacts accordingly. In subsequent iterations, the 

attacker observes the lack of change in the router’s strategy and progressively increases the probability 

of attack on 𝐿0,2 until a tipping point is reached because the router’s risk aversion threshold has been 

exceeded and it calibrates its routing strategy to reduce risk. Thus, every reversal in Figure 4 corresponds 

to occasions in Figure 5 where the black lines (risk aversion thresholds) are crossed and the router 
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responds to the provocations of the attacker. While not visible in Figure 5, iteration 82 to convergence 

do not cross the black lines, explaining why there is substantially less fluctuation in the corresponding 

vulnerabilities in Figure 4. 

 
3.3 Comparison between deterministic and game theoretic approach 

 

To assess the quality of the proposed method, we compared it to the deterministic approach described 

in [13], which also divided the simulation into time intervals ∆𝑇 , but ran |𝐸| × |∆𝑇| simulations, 

computed the travel time, and difference between this travel time and the travel time for the fully 

operational network. In the deterministic approach, the criticality of a link is proportional to the travel 

time, whereas relative criticality in the game-theoretic approach is the sorted values of the link 

vulnerabilities. Thus, it is possible to directly compare the agreement between the rankings produced by 

the deterministic and game-theoretic approaches. 

 

Table 2 compares the outputs of the game-theoretic and deterministic methods. Columns two and three 

report the vulnerability determined by the game-theoretic approach on the 94th iteration (𝜇94) and the 

corresponding ranking over all combinations of time interval (∆𝑡𝑖) and link(𝐿(𝑖,𝑗)), while columns four 

and five provide the corresponding travel times (TT) and ranks produced by the deterministic approach 

for time interval ∆𝑡1. Similarly, the values for intervals ∆𝑡2 and ∆𝑡3 are shown in columns six through 

thirteen. 

 

Table 2 Comparison of game-theoretic and deterministic methods 

Link   ∆𝑡1    ∆𝑡2    ∆𝑡3  

Name 𝜇94 
𝜇94 

rank 
TT 

TT 

rank 
𝜇94 

𝜇94 

rank 
TT 

TT 

rank 
𝜇94 

𝜇94 

rank 
TT 

TT 

rank 

L0,1 0.0639 15 1665 11 0.1394 12 1658 14 0.0817 14 1669 8 

L0,2 1.4447 1 1672 7 1.0896 5 1664 12 1.2558 2 1668 9 

L1,0 0.0000 20 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L1,2 0.0000 20 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L1,3 0.0071 19 1672 7 0.0380 17 1667 10 0.0390 16 1769 2 

L2,0 0.0000 20 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L2,4 0.4149 7 1702 5 0.3081 9 1738 3 0.3085 8 1817 1 

L3,4 0.0000 20 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L3,5 0.1323 13 1645 15 0.1475 11 1659 13 0.1489 10 1735 4 

L4,2 0.0000 20 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L4,3 0.0306 18 1638 16 0.0000 20 1638 16 0.0000 20 1638 16 

L4,5 0.8295 6 1668 9 1.1028 4 1681 6 1.1038 3 1735 4 

L5,3 0.0000 20 1638 16 0.0000 20 1638 16 0 20 1638 16 

 

To compare the deterministic and game-theoretic approaches, we applied Spearman’s rank correlation 

coefficient to the ranks reported in Table 2, producing a correlation 𝑟𝑠 = 0.8882 with a p-value of 

4.63 × 10−14, demonstrating the strong correlation between the two approaches. 

 

To further illustrate the value of the game-theoretic approach, Figure 6 shows the correlation attained in 

each iteration as well as a moving average. Not only does the game produce vulnerabilities that correlate 

well with the deterministic ranks, the correlation never falls below 0.8 after iteration 65 and the moving 

average demonstrates the increasing trend. 
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Figure 6 Spearman’s rank correlation coefficient 

 
 

4. CONCLUSION AND FUTURE RESEARCH 

 
This paper presents a game theoretic approach to assess the dynamic vulnerability of a transportation 

network. The technique implements a mixed-strategy game between an attacker that seeks to disrupt the 

normal flow of traffic and a defender that attempts to minimize the risk posed by such an adversary. The 

method of successive averages was implemented to ensure convergence. Unlike our previous 

deterministic approach, this technique can consider the relative vulnerability of all links and time 

intervals in parallel. Moreover, computing Spearman’s rank correlation coefficient on the relative 

criticality of link/time interval pairs determined by the deterministic and game- theoretic methods 

demonstrated strong correlation, suggesting that the proposed game-theoretic approach produces a 

reasonable approximation to the exact but slower deterministic method. 

 

Future research will seek to overcome performance and accuracy challenges encountered when scaling 

the game- theoretic approach to larger networks to enable fast identification of vulnerable links. We will 

also utilize the game-theoretic dynamic transportation network vulnerability approach to allocate limited 

defensive resources to links at specified times to mitigate vulnerability most effectively. 
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