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Abstract: This paper presents a physics-of-failure approach to model the common cause failures 

(CCFs) by directly or indirectly measuring and integrating the component degradation evolutions 

inferred from condition monitoring data. The CCF impacts are characterized based on the 

conventional parametric model, but unlike the parametric CCF models, the parameters are derived as a 

function of time based on the estimated degradation states. As such, the proposed parametric CCF 

estimation is specific to the component being analyzed and is dynamic over lifetime service. The 

component degradation evolution is characterized by a state-space based degradation model that is 

built based on the informative features extracted from condition monitoring data. In this study, the β-

factor model is adopted without loss of generality, and the component degradation states are estimated 

using the sensor monitoring data via a recursive Bayesian approach. The validity of the proposed 

approach is demonstrated by the sensor monitoring data acquired from a special-purpose experiment 

involving redundant centrifugal pump systems. The results demonstrate the dynamic characteristics of 

CCF and the significant effects of age-related degradation on the likelihood of CCF. This study 

introduces physical evidences to the CCF research and provides a component-specific study to 

validate the significance of CCF. This study also introduces a new way to quantify CCF impacts and 

would work as a basis for the multi-unit Probabilistic Risk Assessment (PRA). 

 

Keywords: Common Cause Failures, Condition Monitoring, Age, Degradation, Centrifugal Pump. 

 

1.  INTRODUCTION 

 

The term common cause failure (CCF) events encompass multiple component failures nearly 

concurrently due to the possible mechanisms that directly impair the component capacities to perform 

the design function [1]. The CCF events have been the well-recognized contributor to risks posed to 

the safe operation of nuclear power plants. Considerable research efforts have been devoted to 

parametrically model the CCF impacts, referred to as CCF models. In the state-of-the-art parametric 

CCF models [2] (i.e., β-factor model, the α-factor model and the multiple Greek letter model), the 

CCF events are characterized by some static CCF parameters that need to be quantified through 

statistical analysis based on historical observations and engineering judgment [3, 4]. However, these 

CCF models suffer from several major limitations: 

• The models are mainly developed based on generic experience and are usually not specific to 

the operating components. 

• The number of observed failure events in nuclear power plants is limited, especially for the 

events involving multiple failures. 

• There are difficulties to model dependencies in asymmetrical components and to account for 

the dependencies among the components within multiple common cause component groups. 

 

The implicit assumption of these CCF models is constant failure rate where the failures are treated as 

fully random without consideration of the degradation effects. The validity of this implicit assumption 

is debatable, as the nuclear industry is faced with concerns due to plant aging and plant life extension 

where effects of CCF would be paramount [5, 6]. The importance of aging impacts of CCF on plant 

risks is also evident from the historical operational experience [7]. However, it is still an open and 

challenging issue to properly consider the aging impact on the CCF modeling, which constitutes the 

primary objective of this paper. 
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This paper develops a physics-of-failure approach to modeling degradation-related CCF events by 

integrating the component degradation evolution that can be characterized through condition 

monitoring data. It is first assessed the component degradation by constructing a degradation index 

based on extracting informative features from the condition monitoring data. Then a state-space based 

degradation model is built to describe the component degradation evolution considering the variations 

both within and across components. Thereafter, the CCF impacts are estimated based on the detected 

degradation evolution and the CCF β-factor model is adopted without loss of generality. At each time 

step, the β-factor for CCF probability is estimated as the fraction of the degradation states of multiple 

components that simultaneously exceed each component’s endurance to degradation. The estimation 

of the β-factor for CCF probability, however, follows the conventional parametric CCF model. 

Accordingly, the scope of the parametric CCF model is dynamic over lifetime service rather than 

static.  

 

The validity of the proposed approach is demonstrated by the sensor monitoring data acquired from a 

special-purpose experiment involving redundant centrifugal pump systems at the University of 

Maryland. The β-factor for this redundant pump systems are estimated by combining the general 

degradation property with the real-time sensor monitoring data. No maintenance-based rejuvenation is 

assumed, which follows the state-of-the-art practice of degradation modeling. 

 

The paper is organized as follows. Section 2 briefly discusses the proposed approach to modeling CCF 

through integrating component degradation evolution. Section 3 presents the experimental study and 

CCF estimation results. Section 4 presents the conclusions. 

 

 

2.  SUMMARY OF PROPOSED APPROACH 

 

It is proposed to model the CCF for components under age-related degradation by integrating the 

component degradation evolutions inferred from condition monitoring data. This is a physics-of-

failure approach consisting of two parts. The primary objective is to advance the state-of-the-art CCF 

research by exploiting the recent advances in sensor-based techniques and computational capabilities. 

Section 2.1 discusses Part 1, the overall degradation assessment. Section 2.2 discusses Part 2, 

estimation of the β-factor for CCF probability. 

 

2.1. Degradation Assessment 

 

The first part aims to assess component degradation and build a state-space based degradation model 

based on the sensor monitoring data. In general, the condition monitoring data [8] could be directly or 

indirectly correlated to the severity of the underlying degradation process. However, it is difficult or 

even impossible to identify the physical signals that directly characterize the underlying degradation 

process, as the engineered components become more complex [9]. The signal processing techniques 

and machine learning techniques [10, 11, 12] are usually needed to extract fault relevant features [10] 

from the raw signals and ultimately utilized to develop the degradation index [13]. Thereafter, the 

degradation evolution is usually modeled as a continuous stochastic process according to a physics-

based degradation model or some functional form referred to as the empirical degradation model based 

on the constructed degradation index. In this study, the degradation process is modeled by one of the 

most common stochastic processes referred to as general path model [14]. The parametric function is 

assumed to be 𝑌𝑘
s = 𝑓(𝑘; 𝑿𝒌

𝑠 , 𝜑) , where 𝑌𝑘
s is the degradation state of the 𝑠𝑡ℎ component at the time 

step k, 𝑿𝒌
𝑠  is a vector of model parameters that is usually treated as a vector of random variables to 

account for unit-to-unit variability, and 𝜑 is an independent and identically distributed (i.i.d.) random 

error term. Herein, we assume the initial degradation state is zero without loss of generality.  

 

A state-space model is then built to describe the dynamics of the degradation process [15, 16]. The 

degradation model parameters are assumed to be unobserved states that evolve over time as a random 

walk process, so as to capture the variation across components. The variability within each component 

itself is considered by the observation noise. For the 𝑠𝑡ℎ component involved in the correlated group, 
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the state-space model is applied to track the degradation evolution in terms of the state function and 

observation function.  

 

State function: 𝑿𝒌
𝒔 = 𝑿𝒌−𝟏

𝒔 + 𝑽 →  p(𝑿𝒌
𝒔 |𝑿𝒌−𝟏

𝒔 )  (1) 

 

Observation function: 𝑌𝑘
𝑠 = 𝑓(𝑘; 𝑿𝒌

𝒔 , 𝜑) →  p(𝑦𝑘
𝑠|𝑿𝒌

𝒔 ) (2) 

 

where 𝑓(𝑘; 𝑿𝒌
𝑠 , 𝜑𝑘) is the degradation model, 𝑿𝒌

𝑠  is the state vector of the 𝑠𝑡ℎ  component that is 

assumed as the hidden Markov process; 𝑌𝑘
𝑠  is the observation (i.e., degradation index) of the 𝑠𝑡ℎ 

component that is conditionally independent given the hidden process; 𝐕𝐬 is the i.i.d. process noise 

vector; 𝜑 is the i.i.d. observation noise; k is the time step; p(𝑿𝒌
𝒔 |𝑿𝒌−𝟏

𝐬 ) is the transition distribution; 

and p(𝑌𝑘
𝑠|𝑿𝒌

𝐬 ) is the observation distribution.  

 

 

2.2. CCF Estimation 

 

The occurrence of CCF would be indicated by the concurrent degradation state exceedance of the 

endurance to degradation. This is consistent with the state-of-the-art degradation modeling that a 

component failure is defined as the point at which the degradation state exceeds a predetermined level 

of endurance to degradation. Therefore, the CCF impacts would be characterized by the fraction of 

multiple exceedances of the endurance to degradation. This follows the conventional parametric CCF 

model and further extend the scope of the parametric CCF model to be dynamic over the service 

lifetime rather than being static.  

 

With the real-time sensor monitoring data of plant-specific components, one could achieve the specific 

𝛽-factor estimate by combining the general degradation property with the sensor monitoring data. To 

do this, the state-space model in Section 2.1 is further utilized such that once the sensor monitoring 

data are collected from an operating component, the hidden states can be inferred to calibrate the 

estimate of CCF in real time. In this study, the recursive Bayesian updating method is implemented 

with the particle filtering algorithm [17] to estimate the posterior probability density function (pdf) of 

the degradation state of the 𝑠𝑡ℎ component p(𝐗𝐤
𝒔 |𝐘𝟏:𝐤

𝒔 ) given the observations. At each time step, the 

samples obtained from the resampling process could be treated as the realizations of the degradation 

state for each component, and hence can be used to estimate CCF. 

 

 
Figure 1: Characterization of CCF with the Components’ Degradation States 

 

Consider a two-component system at the time step k as an illustrated in Figure 1. The degradation 

states for component 1 and component 2 are respectively realized by the N samples x1:𝑁
(1,𝑘)

denoted by 

circles and the N samples x1:𝑁
(2,𝑘)

 denoted by triangles. The endurance to degradation 𝐿𝑓 is treated as the 
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same for both components, as is the convention of CCF. Then the 𝛽-factor at each time instant k is 

estimated as the fraction of dependent failures involving more than a single component as shown in 

Equation (3), where the denominator denotes the number of all failures and the numerator denotes the 

number of dependent failures: 

 

βk =
∑ {I [2, ∑ I ( x𝑘

(𝑠,j)
, 𝐿𝑓)2

s=1 ] ∙ ∑ I ( x𝑘
(𝑠,j)

, 𝐿𝑓)2
s=1 }N

j=1

∑ {I [1, ∑ I ( x𝑘
(𝑠,j)

, 𝐿𝑓)2
s=1 ] ∙ ∑ I ( x𝑘

(𝑠,j)
, 𝐿𝑓)2

s=1 }N
j=1

            

    s = 1, 2; j = 1, … , N. 

(3) 

where βk is the estimate of 𝛽-factor at the time step k, N is the total number of samples, x𝑘
(1,1:N)

 is the 

realization of the degradation state of component 1 at the time step k, x𝑘
(2,1:N)

 is the realization of the 

degradation state of component 2 at the time step k, 𝐿𝑓 denotes the endurance to degradation, I(∙) is 

the state indicator function, which equals 1 for component failure when x𝑘
(𝑠,j)

 is greater than 𝐿𝑓, and 

otherwise equals 0, indicating component survival. 

 

 

3.  EXPERIMENTAL DEMONSTRATION 

 

3.1. Experimental Description 

 

To demonstrate the proposed approach, a special-purpose experiment was designed at the University 

of Maryland. As an active component susceptible to CCF [18], the centrifugal pump was chosen for 

this case study and three redundant centrifugal pump systems were tested from brand-new condition to 

full failure inside a temperature chamber as displayed in Figure 2. The pump degradation and failure 

were exposed to recirculated seawater at elevated temperature. Accordingly, the common-cause 

dependencies among the pumps were rooted in the same component configuration, the same operating 

practice, and common intra-environmental conditions (i.e., elevated temperature and corrosive 

seawater) and inter-environmental conditions (i.e., elevated temperature).  

 

 
Figure 2: Test Rig and Instrumentation 

 

The entire testing profile is categorized into three phases (i.e., Phase-1, Phase-2 and Phase-3) as shown 

in Figure 3 given the changes of system configuration. Phase-1 involved a three-pump redundant 

system from the beginning to 1714 hours of operation. With Pump-1 failed, it then proceeded to 

Phase-2 involving a two-pump redundant system until 4414 hours of operation. After Pump-3 failed, 
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Phase-3 was with only Pump-2 until 4863 hours of operation. Note that only Phase-1 and Phase-2 are 

of interest for CCF events. 

 

 
Figure 3: Testing Profile with Three Phases 

 

The pump condition is monitored using the diverse sensors distributed through the test rig as displayed 

in Figure 2. Failure analysis was conducted after the experiments to identify the root causes: Pump 1 

was failed by the fatigue mechanism leading to seal fracture; Pump 2 was failed by the fretting 

corrosion occurred on the contact surface between the mechanical seal and the rotating shaft; Pump 3 

was failed by the pitting corrosion occurred on the contact surface between the mechanical seal and 

the rotating shaft. The degradation profiles of the three pumps are developed as shown in Figure 4, 

based on the features contained in the pump efficiency data derived from the four measured 

operational characteristics: electric current, electric voltage, differential pressure and flow rate. 

Examination of the degradation profiles indicates that the same functional relationship (i.e., a power 

function) could be applicable to characterize the pump degradation behaviors associated with any of 

the three failure mechanisms. Thereafter, a state-space model is built and the sensor monitoring data 

collected from an operating pump is utilized to infer the hidden states and ultimately to calibrate the 

estimate of CCF in real time. 

 

 
Figure 4: Degradation Profiles of the Three Pumps 

 

3.2. Results and Observations 

 

As an illustrative example in Figure 5, the degradation state of each pump at 1500 hours of operation 

is estimated and characterized by six thousand samples. This respectively indicates the number of 

occurrence for the possible degradation states for the three pumps. Then the CCF at 1500 hours of 
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operation would be estimated based on the fractions of concurrent exceedance of failure threshold as 

discussed in Section 2.  

 

 
Figure 5: Degradation States of the Three Pumps at 1500 Hours of Operation 

 

With newly acquired sensor monitoring data at each time instant, the degradation state of each pump 

would be estimated and utilized to update the CCF estimate. As shown in Figure 6, the CCF estimates 

for Phase 1 and Phase 2 are summarized assuming no maintenance-based rejuvenation. This captures 

the dynamic features of CCF due to the different failure mechanisms underlying each pump and 

system configuration changes. Some important observations are discussed as below: 

• The 𝛽 -factor starts from zero and approaches one at the end. It is intuitive to note that the 

redundant pump system would fail eventually without any mitigating actions. 

• It appears independent failure is dominant in Phase-1, indicating by the low 𝛽-factor, because 

Pump 1 is subject to more likely failure than the other two pumps. This is evident from its shortest 

experiment duration in Section 3.1. 

• The 𝛽-factor approaches one in Phase-2, because the pumps degrade without mitigating actions. 

• The knowledge of the pump degradation state allows one to determine the time that is required to 

implement mitigating actions given some critical level of CCF [19]. Suppose the 𝛽-factor should 

be less than 0.05, so that mitigating actions should be taken before 2870 hours of operation. 

 

 
Figure 6: Estimate of β-Factor for Phase-1 and Phase-2 
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4.  CONCLUSION 

 

The paper advances the state-of-the-art CCF research by exploiting the recent advances in sensing 

techniques and computational capabilities. It was developed a physics-of-failure approach to model 

the CCF for components under age-related degradation by integrating the component degradation 

evolutions inferred from condition monitoring data. An experimental case study involving three 

redundant centrifugal pump systems was presented to demonstrate the approach. The significance of 

CCF events using a component-specific study was discussed, along with the dynamic characteristics of 

CCF. The results concluded that the age-related degradation has significant effects on CCF 

probability. This study introduces physical evidences to the CCF research of nuclear power plant and 

would work as a basis for the multi-unit Probabilistic Risk Assessment (PRA). Moreover, this study 

presents a new way to quantify the common cause influences. Integrating the maintenance impacts on 

the component degradation evolutions is part of our current research to obtain more realistic estimates 

of CCF probability as components degrade, which allows one to examine the validity of the generally 

estimated CCF parameters used in the current practice. 
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