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Abstract: Increasing of maintenance cost is caused more technical interests on as-needed maintenance 

methods such as condition-based maintenance instead of scheduled maintenance. Selection of the 

location, type and number of sensors are important metrics of sensor network optimization. In this 

study, a novel stochastic approach is applied for determining optimal sensor locations. Three 

independent indexes are considered as decision-making parameters which reflect the efficiency of 

sensor network. First criterion is determined due to the uncertainty of sensor information which shows 

the ability of fault diagnosis of a sensor network. With about variation of environmental factors 

conditions (e.g. temperature) and their failure threshold characterization, system failure model is 

developed and analyzed by a proposed efficient Monte Carlo simulation. Statistical variance of sensor 

information in estimating of system state, the quantitative uncertainty measure of choice in this 

research, is estimated as the information value that each possible sensor placement scenario provides 

through sensor information. Second criterion is the reliability of sensors which reflects the fault 

detectability in sensor networks. A dynamic failure model is developed between sensors and their 

corresponding components. Then occurrence probabilities of top events are calculated for all 

placement scenarios. Risk of sensor failure is considered as third criterion which includes the 

consequence of sensor failure. In the next step, all scenarios are prioritized based on proposed criteria. 

Regarding to the results, it is concluded that considering proposed criteria independently misleads the 

decision maker about the optimal placement scenario. Accordingly, a combinatorial index is 

determined through Shannon Entropy theory which covers all criteria simultaneously. Finally all 

scenarios are prioritized based on proposed combinatorial index. As a case study, optimization of 

sensor placement is demonstrated on a typical steam turbine and results are discussed. 

 

Keywords: Fault diagnosis, Information uncertainty, optimal sensor placement, Risk-based 
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1. INTRODUCTION 

  
Condition monitoring process requires efficient sensor network for health state estimation of complex 

systems. Fault detection, simultaneous fault distinction, uncertainty of sensor data and sensor 

reliability are main challenges in designation of monitoring process. Location, type and number of 

sensors are important metrics, affecting sensor network functionality effectiveness. There are three 

main available stochastic approaches for optimum determination of sensor location: i. Information 

uncertainty, ii. System reliability and iii. Risk of sensor failure. In the first category, placement of 

sensors is optimized based on sensor data uncertainty. The information contains different types of 

uncertainties justifying the probabilistic expression of sensor information in condition monitoring 

process. Jackson and Mosleh [1] presented a Bayesian approach for generating inference from 

multiple overlapping higher-level system data sets on component reliability parameters. Considering 

overlap data from different sensors in a system, optimization of sensor placement is studied as a case 
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study in this research according to less information uncertainty. Jackson and Modarres [2] prepared a 

review of how overlapping sensor data is analyzed in a Bayesian framework. Accordingly, a sensor 

placement optimization process has been formed for maximizing the information. Developed process 

is effective where sensors are expensive to install with various resource constraints (such as volume 

and weight), limiting their use. Prior information is used in proposed methodology to simulate 

evidence sets, which are then used to simulate posterior distribution of reliability metrics of interest. 

Information utility is derived from these posterior distributions, and an expected information utility is 

then attributed to sensor placement. Pourali and Mosleh [3] utilized a Bayesian Belief Network (BBN) 

–based sensor placement optimization methodology. Functional topology of the system, physical 

models of sensor information, and Bayesian inference techniques have been used in the approach 

along with the constraints. 

In the second category, effect of sensor failure is studied on overall system failure. It is difficult to 

diagnose particular sensor faults. Therefore, different fault modes seen in sensors are investigated and 

faults are also simulated [4]. The fault models can then be used in simulated sensor fault scenarios to 

ensure that algorithms can distinguish between sensor faults and system faults. Accordingly, effects of 

failure modes are studied in detail and classified based on their criticality and occurrence probability 

[5]. A method is also proposed for taking corrective actions for eliminating the occurrence of various 

failure modes. Different techniques for sensor fault detection, disambiguation, and mitigation are also 

studied [6]. The research presents an expert system that uses a combination of object-oriented 

modelling, rules, and semantic networks to deal with the most common sensor faults, such as bias, 

drift, scaling, and dropout, as well as system faults. There is limited research on reliability of sensors 

and its effect on overall reliability of system health estimations while failure of sensors is a common 

event during the main system lifetime. Sensors are also considered as components in system failure 

model development [7]. Then a dynamic model is developed for evaluating the effect of time 

dependencies of sensors as well as components failure. Because of that, PAND gate is added to the 

system failure model between all sensors and their corresponding components to develop the failure 

model of each sensor placement scenario.  

In the third category, system failure costs are considered in optimal sensor placement process. The 

optimal location of sensors can be identified based on the expected cost specifications [8]. In the 

proposed approach, minimal expected diagnosis cost is considered as the objective function for the 

sensor optimization with a fixed number of sensors. However, the consequences were neglected for 

system failures due to sensor failure. Economic consequences of sensor failure are irrecoverable in 

respect to the monitoring system as well as system failure [9].  

According to the literature, sensor placement prioritization results were different due to considering 

each criterion separately. In the present study, the main motivation is dedicated to define a 

comprehensive criterion considering all proposed indexes simultaneously. First, Information 

uncertainty index is developed based on deviation of sensor information in estimation of system state. 

This index is considered as the ability of sensor network in diagnosing system faults. Then, sensor 

reliability index is determined based on the probability of top event in system dynamic fault tree 

analysis. Proposed index is considered as the ability of sensor network in detecting system faults. In 

the third step, a risk-based criterion is defined in dealing with sensor failure occurrence as well as the 

loss consequences of operation and maintenance in determination of system optimal sensor placement 

arrangement for both false-alarm and missed-alarm of sensors. Finally, using Shannon Entropy 

Theory, a combinatorial index is determined through considering all three proposed indexes 

simultaneously. In section 2, diagnosis ability of sensor network is discussed through determination of 

information uncertainty index. In this section, failure-causes of the system are determined through 

developing the system failure model. Accordingly, state vectors are determined based on different 

occurrence combination of failure-causes. Potential places of sensors are also identified in this section. 

Then sensor placement scenarios are ranked based on obtained uncertainty index. In section 3, 

detection ability of sensor network is illustrated through dynamic functional modelling of system 

failure. In section 4, sensor failure and corresponding mechanisms are studied for the dominant failure 

modes of the system. Occurrence probabilities are estimated for sensor missed-alarm and false-alarm 

in this section. Then risk model is developed for sensor failure. Reliability of sensors and magnitude of 

losses are obtained due to both sensor failure types. In section 5, a combinatorial index is determined 
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based on all three proposed indexes. In section 6, a case study is discussed on optimal sensor 

placement determination of a steam turbine. The results are discussed with the concluding remarks 

provided in section 7.  

 

2. Diagnosis Ability of a Sensor Network 

 
Considering sensor data, collected in different states of system’s components, information of system 

health is usually obtained in the process of condition monitoring. The information inevitably contains 

different sources of uncertainties justifying the probabilistic expression of sensor information. 

Considering this fact, the most efficient sensor network in diagnosing system faults is determined as 

the configuration with minimum sensor information uncertainty.  

First, the system components and their failure causes are identified. This is achieved by utilization of 

system Failure Modes and Effects Analysis (FMEA). The failure model of the system is developed 

through Fault Tree Analysis (FTA) to configure the logical relation of system components and related 

failure causes. Then, all combinations of failure causes are developed to form the state vectors []. The 

ith state vector is written as eqn. (1): 

 nji aaaaSV ,...,...,,, 21  (1) 

where “n” represents the quantity of failure causes in the system model, “ai” illustrates a binary 

variable equal to 1 if the ith failure cause was occurred and equal to 0 in opposite direction. As an 

example, state vectors of a system with three failure causes are determined in Table 1. SV1 represents 

occurrence of all failure causes whereas SV8 represents a state in which none of failure causes were 

occurred. 

 

Table 1: State Vectors of a Typical System 

Failure causes SV1 SV2 SV3 SV4 SV5 SV6 SV7 SV8 

Failure cause 1 1 1 1 0 1 0 0 0 

Failure cause 2 1 1 0 1 0 1 0 0 

Failure cause 3 1 0 1 1 0 0 1 0 

  

Occurrence probability is calculated for each state vector through eqn. (2) as: 
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where “Pj” represents the occurrence probability of jth failure-cause. Effective variables such as 

temperature, humidity, vibration are determined on each failure-cause after identifying failure-causes 

of the system like overheating, severe humidity, aging following with failure thresholds and 

probability distribution determination for proposed variables. The failure is occurred when the variable 

exceeds specified preset threshold. Regarding to proposed assumption, degradation process on system 

variable was neglected in this study. Monte Carlo simulation, as shown in, Figure 1 is utilized for 

estimation of occurrence probability for each failure-cause. A state vector is then generated in each 

step of proposed simulation based on occurrence of failure-causes. Eventually, each state vector 

occurrence quantity is proportioned by total number of iteration to estimate occurrence probability of 

proposed state vector.   
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Figure 1: The Algorithm for Estimating Occurrence Probability of Each State Vector 

 

Potential feasible places of sensors are selected as initial locations to determine sensor placement 

scenarios in the determination algorithm. In this methodology, potential places of sensors are 

determined due to Reliability Importance of failure causes [10].  

According to the pervious step about state vectors, information vectors are determined for sensors in 

this step. Each information vector contains binary arrays; equal to 1 if the related sensor is activated 

and equal to 0, otherwise. Considering “p” sensors for each scenario, there are 2p information vectors. 

As an example, the information vectors are shown for a scenario with 3 sensors in Table 2. 

 

Table 2: Information Vectors for a Typical System 

Information 

vector 
IV1 IV2 IV3 IV4 IV5 IV6 IV7 IV8 

sensor 1 1 1 1 0 1 0 0 0 

sensor 2 1 1 0 1 0 1 0 0 

sensor 3 1 0 1 1 0 0 1 0 

 

Occurrence probability of state vectors is estimated for each information vector. It is required to 

identify the state vectors activating the specific information vector. Then by summation of 

probabilities of proposed state vectors, the occurrence probability of sth information vector is 

calculated as eqn. (3):  
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Considering the probability of each information vector, the updated occurrence probability is 

estimated for each failure-cause using Monte Carlo simulation algorithm. In this approach, an interval 

with lower and upper bounds of “0” and “1” is divided based on probability of information vectors. 

Length of each interval is equal to the probability of related information vector as it is shown in 

Figure 2. In each step of simulation, a random number is sampled from a uniform distribution. If the 

random number falls in one of proposed intervals, it indicates the occurrence of corresponding 

information vector.  

Figure 2: Divided Interval with Lower and Upper Bounds 0 And 1 Based on Probability of IVs 

 

By occurrence of the specific information vector, associated state vectors are chosen. Finally, the 

probability of each failure-cause is estimated in each step by eqn. (4). If IV(r) is activated, then:  
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where “C” represents the failure causes vector, containing “n” failure-causes. “s” is also illustrates the 

quantity of information vectors.  

In the last step, information utility function is determined. The information utility function quantifies 

the state of knowledge of unknown parameters [9]. Information as the inverse of uncertainty is 

characterized on the magnitude of the variance of parameters. It is considered the most efficient when 

the smallest possible variance is achieved. In this research, probabilities of failure-causes occurrence 

are estimated through Monte Carlo simulation based on generating of information vector as discussed 

in step 5. Accordingly, a probability is assigned for each failure-cause occurrence in any iteration of 

the simulation process. By the definition of information uncertainty, variance of each failure-cause 

probability is determined in Monte Carlo simulation code developed in this research. It is clear that 

more dispersion on failure-causes occurrence probability results in less accuracy of system health 

condition estimation. Therefore, the information uncertainty index (UI) is determined as the 

summation of inverse variance of all failure causes probabilities as eqn. (5). 
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3. Detectability of a Sensor Network 
 

In a condition monitoring process, sensor is mounted on the component to monitor a specific 

characteristic. In this case, if the proposed characteristic exceeds a determined threshold, sensor makes 

an alarm. This alarm will notify the operator and corrective actions are taken to prevent the occurrence 

of main failure. But if a sensor fails then the related failure will not be detected immediately. In 

condition-based maintenance, if a fault is appeared in the system component and sensor is working 

properly, the component will not be failed due to sensor alarm. So in this research, it is assumed that 

the failure of component is occurred only when the related sensor is failed before the component 

failure. So the sequence of failure between sensor and component is important in system failure 

estimation. 

For applying time dependency on the system, a dynamic gate named Priority-AND is used. In this 

case, standard FTA of the system is replaced with DFTA. PAND gate is logically equivalent to an 
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AND gate where the input events must occur in a specific order. In this study, PAND gate is located 

between sensor and its corresponding component, shown in Figure 3. 

Figure 3: PAND Gate between Sensor and Related Component 

 

Applying this gate, dynamic-based model can be developed for all sensor placement scenarios. In the 

next step, applying a Monte Carlo-based algebraic method [7], the occurrence probability of top event 

is calculated for each scenario. Based on calculated probabilities, the optimal scenario will be selected.  
 

4. Sensor Failure Risk of Sensor Network 

 
Sensor faults occur due to various reasons such as ageing, wear, manufacturing inefficiencies, 

incorrect calibration or mishandling and environmental conditions [11]. In addition, sensor failure are 

potentially categorized in two types of i) missed alarm and ii) false alarm. The former is occurred 

when the sensor does not alarm in case of fault occurrence and the latter is happened when sensor 

alarms while the operation state is normal.  

Considering sensor missed alarm in condition monitoring process, probability of component functional 

failure (CFF) is calculated through eqn. (6): 

)Pr().Pr()Pr( MACFCFF   (6) 

where Pr(CF) illustrates the failure probability of the component and Pr(MA) shows the occurrence 

probability of corresponding sensor missed-alarm. It shows that the functional failure depends on both 

component and related sensor failures. If there are several sensors in the system, affected by the 

proposed component failure, probability of system functional failure is calculated under condition 

monitoring process as eqn. (7): 
sldn
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where dsl is a binary variable, the value is 1 if the failure of lth component causes the sth sensor to alarm 

and considered zero if it doesn’t activate at all. In this case, sensor failure is simulated in complex 

systems with different sensors.  

Sensor false alarm has no effect on the system functional failure because no fault has been occurred in 

the system. However, there are additional costs for unnecessary possible operation interruption, 

inspections and repairs, increasing the total cost. On the other hand, in case of the sensor missed alarm 

situation, economic consequences are not negligible for system failure and related maintenance costs. 

Taking into account all these factors, it is concluded that risk of the system due to sensor failure is a 

proper criterion for selecting of efficient sensor network because it covers both sensor failure and 

related consequences simultaneously. In the following section, risk assessment is described for the 

system for both sensors missed alarm and false alarm.    

To assess the risk in case of sensor placement determination problem, the likelihood of different events 

and also related losses are considered for both missed alarm and false alarm cases.  

In the missed alarm condition, instead of taking into account the risk of each failure cause separately, 

all failure causes are combined together through utilization of state vectors. The modified probability 

of system functional failure (SFF) is calculated for system due to missed alarm of sensor through eqn. 

(8): 
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where dis is a binary variable, assumed 1 if the occurrence of ith state vector affects the sth sensor and 

zero otherwise.  

Missed alarm condition causes substantial losses in the system. System failure cost is the main 

consequence of sensor failure, apportioned in maintenance program design. Cost of monitoring system 

is an addition in preventive maintenance process. This cost is determinant in sensor placement 

determination problem since it varies based on the quantity and type of sensors. Severity Factor is a 

proper index for reflecting the consequence of failure cause occurrence, obtained from FMEA. 

Accordingly, severity vector (SEV) is determined using FMEA table. Finally, risk of the sensor 

missed-alarm is determined as eqn. (9): 
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Regarding to the eqn. (9), failure probabilities are multiplied for activated sensors by occurrence 

probability of ith SV. The result is then multiplied by amount of effective severity, calculated through 

multiplying ith SEV and SV. As an example, if there are three failure causes in each state vector, both 

SEV and SV are 3×1 matrices. Therefore, multiplying SEV by transpose of SV in each step, a quantity 

is obtained which reflects the consequences of proposed SV. 

In the false-alarm condition, only state vectors are applied which do not actuate all sensors. The reason 

is that if all sensors were actuated, there is not any sensor to make false alarm. Probability of false 

alarm occurrence is calculated through eqn. (10) as: 
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where isd   is a binary variable, assumed 1 if the failure of ith state vector doesn’t affect the sth sensor 

and zero otherwise. By augmenting the expert judgments by available experimental data, it is observed 

that probability of sensor false alarm is less than probability of sensor missed alarm in most cases.  

False alarm condition results in economic losses due to unnecessary actions only and does not include 

any losses due to system failure. Thus, the main losses are inspection costs (Cinsp) and unnecessary 

repair costs (Crep). Finally, risk of the sensor false alarm is determined as eqn. (11): 
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Eventually, considering both missed alarm and false alarm of sensors, risk of sensor failure is 

developed as eqn. (12): 
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5. Determining a combinatorial index through Shannon Entropy theory 

 
Finding the appropriate weight for each factor is the main point of a decision-making process. 

Shannon entropy method as an approach for determining weights of attributes in a decision-making 

process is developed based on the uncertainty of information [12]. Considering a sample MADM 

problem for “m” cases and “n” criteria, Table 3 is developed. 
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Table 3: Decision-Making Table 

Factors Criterion 1 Criterion 2 … Criterion w 

Case 1 a11 a12 … a1w 

Case 2 a21 a22 … a2w 

Case 3 a31 a32 … a3w 

… … … … … 

Case v av1 av2 … avw 

 

Since each criterion has reflects different aspect of cases, finding the appropriate weight for each 

criterion is the main points in MADM [13]. One of the objective weighting measures which has been 

proposed by researchers is the Shannon entropy concept [13]. Considering this fact, two main effective 

criteria (information uncertainty and risk of sensor failure) are applied and placement scenarios are 

prioritized based on them. Then efficient placement scenario is selected based on a weighted factor 

which is determined applying Shannon Entropy theory. Weight of each criterion in proposed theory is 

determined through eqn. (13): 
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where devj is calculated through eqn. (14): 
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Finally, by maximum entropy deviation, Decision Making (DM) factor is developed using eqn. (15): 
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According to the results for DM, the efficient case will be selected. In the proposed approach, 

scenarios are considered as “cases” and diagnosis ability, detection ability and Risk of sensor network 

are supposed to be as criteria. Then regarding to Shannon Entropy theory, a weight factor is 

determined for each index. Finally, all scenarios are prioritized through obtained combinatorial 

criterion (DM). 

 

6. Case Study: A Steam Turbine  

 

Steam turbine belongs to a category of machines called turbo-machines, converting thermal energy of 

steam into mechanical energy. Steam turbines are expected as high-reliable machines operating 

continuously for long specified period. The main components of a typical steam turbine are 

diaphragms, rotor blades, bearings, rotor, seals, and casing. There are different types of monitoring 

available for steam turbine including steam quality, flow rate, vibration, lubricant/bearing conditions, 

rotor speed/load or power, auxiliary system operation and noise levels sensors [14].  

Both information uncertainty-based and risk-based sensor placement determination results are studied 

in this application. First, failure causes of system components are identified. Failure modes and effects 

analysis of the steam turbine is developed and results are presented in Table 4 [15].  
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Table 4: FMEA of a Typical Steam Turbine   

Component 
Component 

Function 

Potential failure 

modes/mechanisms 
Occurrence 

Potential causes of 

failure 

Severity 

Index 
Detection 

Risk 

Priority 

Number 

(RPN) 

Diaphragm 

Convert thermal 

energy to kinetic 

energy by 

accelerating the 

steam 

Erosion 4 
Penetration of solid particles 

from or droplets from steam 
4 3 48 

Scaling 2 Too dry steam 3 3 18 

Corrosion 1 
Exposure to the corrosive 

substance in the steam 
2 3 6 

Rotor Blades 

Convert kinetic 

energy to 

mechanical energy 

Erosion 3 
Penetration of solid particles 

from or droplets from steam 
5 3 45 

Cracking 1 
-Fatigue 

-Vibration 
5 4 20 

Scaling 2 Too dry steam 3 2 12 

Seals 
Mechanical 

Sealing 

Erosion 3 

-Penetration of debris 

-Formation of droplets in the 

steam 

2 2 12 

Corrosion 1 
-Exposing to corrosive 

substances in the steam 
1 3 3 

Rubbing 1 -Misalignment of rotor 2 2 4 

Bearing Support the rotor 

Wear 1 -Aging 2 1 2 

Fracture formation 1 
-Fatigue 

-Vibration 
2 4 8 

Rotor 

Transfer 

mechanical energy 

to generator 

Erosion 3 

-Penetration of debris 

-Formation of droplets in the 

steam 

2 3 18 

Corrosion 2 
-Exposing to corrosive 

substances in the steam 
2 3 12 

Misalignment of rotor 1 

-Generator supports are 

skewed 

-Turbine supports are skewed 

4 2 8 

Fatigue 1 -Aging 2 4 8 

Casing 

Protects the rotor 

and forms the 

steam path 

Erosion 4 

-Penetration of debris 

-Formation of droplets in the 

steam 

2 3 24 

Scaling 3 

-Too dry steam 

-High amount of substances in 

the steam 

2 3 18 

Corrosion 2 
-Exposing to corrosive 

substances in the steam 
1 3 6 

 

Comparing the risk priority number (RPN) of different failure causes in FMEA table, it is identified 

that diaphragms and rotor blades are high-risk components in the steam turbine. Therefore, their health 

monitoring has a higher priority. A simplified fault tree model is developed as Figure 4 to clarify 

failure model of the steam turbine for these two components. 
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Figure 4: Simplified Fault Tree Model of the Steam Turbine 

 

Steam temperature, relative humidity percent, percent of debris, vibration amplitude and crack size are 

selected as effective variables for simulating steam turbine failure. Due to limited information about 

proposed variables, expert judgment is augmented with the available data for better estimations of 

their probability density functions. Results are represented in Table 5. Operational and environmental 

conditions of the steam turbine variables were studied and related data about steam temperature, steam 

humidity, debris percent, vibration amplitude and crack size were estimated through both expert 

judgment and literature ([9]). Accurate results are achieved through collecting more precise 

information about system state. 
 

Table 5: Occurrence Probabilities of Failure Causes 

Failure parameters Distribution Threshold 

Steam temperature 

(0C) 
Normal(400,50) 600 

Debris percent Normal(2,0.5) 5 

Vibration amplitude 

(μm) 
Normal(10,1) 15 

Humidity percent Normal(50,5) 60 

Crack size(mm) Normal(0.5,0.1) 1 

 

According to the Reliability Importance of failure causes, two sensors are mounted on the system to 

monitor steam temperature, and rotor blade vibration [9]. In addition, performances of diaphragm and 

turbine are monitored by other independent sensors [9]. Potential places of sensors are indicated in 

Figure 5. 
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Figure 5: Potential Places of Sensors Demonstrated in the Fault Tree 

 

Types of sensors are selected based on their potential places in Error! Reference source not found.. 

Typical failure rate of each sensor is obtained using a generic database [16]. With limitations on 

sensors failure data, the constant failure rates are assumed of sensors in this study.  Failure 

probabilities are calculated for sensors for life time of 4000 hours with the results presented in Table 

6. 

 

Table 6: Types and Failure Rates of Sensors 

Sensor 

number 
Sensor type 

Failure rate 

(per 106 hours) 

Failure probability for 4000 

hours 

1 Tachometer 80 0.274 

2 Wireless accelerometer 4 0.016 

3 Accelerometer 174 0.5 

4 Thermometer 1 0.004 

 

According to reported failure database in reference [16], it is not specified there that which failure type 

(missed-alarm or false-alarm) is published. To correctly account for this issue, the probability of 

sensor false-alarm is determined as 25% of database reported sensor missed-alarm probability [17]. 

Results are shown in Table 7. 

 

Table 7: Probability of Sensor False Alarm 

Sensor 

number 
Sensor type 

False alarm probability for 4000 

hours 

1 Tachometer 0.07 

2 Wireless accelerometer 0.004 

3 Accelerometer 0.125 

4 Thermometer 0.001 

 

Determination of sensor placement is applicable in the case where quantity of the sensors is less than 

the potential places. Based on four potential locations for sensor locations in this study, it is assumed 

here that only three sensors are allowed to use in the given process. All possible scenarios are shown 

in Table 8. 
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Table 8: Sensor Placement Scenarios 

Scenario number Sensor number 

Scenario 1 Sensor1, Sensor2, Sensor3 

Scenario 2 Sensor1, Sensor2, Sensor4 

Scenario 3 Sensor1, Sensor3, Sensor4 

Scenario 4 Sensor2, Sensor3, Sensor4 

 

According to eqn. (2), probabilities of state vectors are calculated. Results are shown in Table 9.  

Table 9: State Vectors of Steam Turbine 
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For each sensor placement scenario, probabilities are estimated for system information vectors using 

system state vectors through eqn. (3). Regarding to the arrangement of sensors in the system, some 

information vectors do not occur [10]. All possible information vectors are presented with their 

probabilities shown in Table 10.  

Table 10: Information Vectors of the First Scenario 

Sensor 
number 

IV1 IV2 IV3 IV4 IV5 

1 1 1 1 1 0 

2 1 0 1 0 0 

3 1 1 0 0 0 

Probability 4.82e-6 0.001 0.1785 0.0186 0.8016 

 

In this step, occurrence probabilities are calculated for all failure-causes. By applying eqn. (9), 

information uncertainty index is calculated for each scenario. Finally, the most efficient scenario is 

selected the one with higher value of the proposed uncertainty index. Results are shown in Table 11. 

 

Table 11: Information Uncertainty Index of All Scenarios 

Scenario Number Information Uncertainty Index 

Scenario 1 6.9e+08 

Scenario 2 4.26e+08 

Scenario 3 7.83e+08 

Scenario 4 3.9e+08 
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Table 11 shows the third scenario with the highest value for the uncertainty index, considered as the 

most efficient placement scenario. The fourth scenario is the worst scenario due to absence of sensor 

#1. In fourth scenario, occurrence of “crack formation” is not detected with the results reflected in the 

Table 11. 

 Applying PAND gate between sensor and related component, dynamic model of the system failure is 

developed. DFT of the system with all potential places of sensors is shown in Figure 6. 

  

Figure 6: Dynamic-Based Model of Sensor and Related Component 

 

As an example, dynamic failure model of the first scenario is developed and shown in Figure 7. 

Vibrations of rotor blade, functionality of diaphragm and turbine operation are monitored in this 

scenario. Also there are sensors in all three level of the system.  
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Figure 7: Functional Model of First Scenario 

 

Using algebraic method for DFT calculation, cut sequences of the developed model are extracted as 

below: 

 

CS1: SO.(S1◄SO) 

CS2: CF.(S1◄CF) 

CS3: V.(S3◄ V).(S1◄V) 

CS4: PD.(S2◄PD).(S1◄PD) 

CS5: SH.(S2◄SH).(S1◄SH) 

 

 Where “SO.(S1◄SO)” means that steam overheat has been occurred and sensor #1 was failed before 

steam overheat. Other sequences are interpreted similar to this example. The simulation is done for 

4000 hours and results are presented in Table 12. 

 

Table 12: Occurrence Probability of Sequential Events 

Sequential event 
Probability of occurrence 

 (for 4000 hours) 

S1◄ CF 0.0075 

S1◄ PD 0.051 

S1◄ SH 0.05 

S1◄ SO 0.015 

S1◄ V 0.0067 

S2◄ PD 0.0028 

S2◄ SH 0.0026 

S2◄ SO 0.00076 

S3◄ PD 0.1 

S3◄ V 0.014 

S4◄ SO 0.00018 

S4◄ V 0.00016 
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Table 5 illustrates that the probability of sensor failure before failure of component is extremely less 

than sensor failure probability. When results of Table 5 are used in equation 2, the probability of each 

cut sequence is affected significantly. Failure probability is calculated for top event of the first 

scenario through: 

 

Pr(TopEvent)=Pr(CS1)+Pr(CS2)+…+Pr(CS5)-Pr(CS1)Pr(CS2)-Pr(CS1)Pr(CS3)-

Pr(CS4)Pr(CS5)+Pr(CS1)Pr(CS2)Pr(CS3)+…=0.002 

 

Described process is applied on the remaining scenarios in Error! Reference source not found.. Final 

results are illustrated in Table 13. 

 

Table 13: Results of Top Event Probability for Different Scenarios 

Scenario Number Probability of top event 

Scenario 1 0.002 

Scenario 2 0.00088 

Scenario 3 0.0398 

Scenario 4 0.0586 

 

Table 13 shows the second scenario with the lowest value for the probability of top event, considered 

as the most efficient placement scenario.  

Risk of sensor failure as the other criterion for sensor placement determination is calculated for each 

scenario according to eqn. (12). First, occurrence probabilities are estimated for state vectors. In next 

step, affected sensors are identified for each state vector. As an example, affected sensors are shown 

for all state vectors in first scenario in Table 14.  

 

Table 14: Affected Sensors of State Vectors in First Scenario 

State vectors Affected sensors 

SV1, SV9, SV12, SV14, SV18, SV20, SV22, SV23, SV25, SV26, SV27, SV29, 

SV30, SV31 

Sensor1, Sensor2, 

Sensor3 

SV5, SV16 Sensor1, Sensor3 

SV2, SV3, SV4, SV7, SV8, SV10, SV11, SV13, SV15, SV17, SV19, SV21, SV24, 

SV28 
Sensor1, Sensor2 

SV6 Sensor1 

 

  As shown in Figure 7, occurrence of vibration and at least one of either steam overheat, steam 

humidity or penetration of debris result in all sensor activation in the first scenario. State vectors 

actuate all three sensors in the first row of Table 14 where the other scenarios actuate only one or two 

sensors. Using state vectors and failure probabilities of related sensors, probability of system 

functional failure is calculated for each sensor placement scenario.  

As discussed before, it is required here to extract state vectors which do not actuate all sensors in order 

to calculate the probability of sensor false alarm. State vectors and related sensors, which may alarm 

incorrectly in the first scenario, are represented in Table 15. 
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Table 15: Feasible False-Alarmed Sensors of All State Vectors in the First Scenario 

State vectors 
Feasible false-alarmed 

sensors 

SV32 
Sensor1, Sensor2, 

Sensor3 

SV6 Sensor2, Sensor3 

SV5, SV16 Sensor2 

SV2, SV3, SV4, SV7, SV8, SV10, SV11, SV13, SV15, SV17, SV19, SV21, 

SV24, SV28 
Sensor3 

 

 Using probabilities of state vectors and also false alarm probability of related sensors, probability of 

sensor false alarm is calculated for each sensor placement scenario. Finally, risk of sensor failure is 

calculated in the system using both sensor failure probability and related monetary losses. SEV is 

determined [3 2 4 5 5] according to Table 4. Cost types are also estimated through reported data from 

the reference due to sensor false-alarm [18], shown in Table 16.   
 

Table 16: Costs Due to Sensor Failure 

Type of cost Value (unit of loss) 

Inspection costs (Cinsp) 0.15 

Unnecessary repair costs (Crep). 1.5 

 

 Applying severity indexes and also normalized costs from Table 16, the risk index is calculated for 

sensor failure by eqn. (16) for all scenarios. Results are illustrated in Table 17. 

 

Table 17: Risk Index of Sensor Failure for Each Scenario 

Scenario Number Risk index of sensor failure 

Scenario 1 0.17 

Scenario 2 0.155 

Scenario 3 0.33 

Scenario 4 0.152 

 

 According to Table 17, the scenario 3 has the highest amount of risk index whereas the scenario 4 has 

the least amount. Comparing with the results of information uncertainty index, rank of scenarios is 

vice versa. The scenario 3 is in the first place due to information uncertainty whereas risk of sensor 

failure is the highest for this scenario.  

Finally, the combinatorial criterion is calculated for different scenarios. The most efficient placement 

scenario is selected through higher information uncertainty index, lower top event probability and 

lower risk index. However, in Shannon Entropy theory, both criteria must have the same trend. 

Accordingly, the inverse of information uncertainty is considered. Applying eqn. 17 and eqn. 19, DM 

is calculated for each scenario. Results are shown in Table 18. 
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Table 18: DM Index for Different Scenarios 

Scenario 

Normalized inverse 

information 

uncertainty 

Normalized top 

event probability 
Normalized risk DM 

1 0.65 0.0341 0.5151 0.1117 

2 1 0.015 0.4697 0.1156 

3 0.546 0.6791 1 0.694 

4 0.408 1 0.4606 0.9195 

 

  According to Table 18, it is concluded that the rank of scenarios is completely different based on DM 

factor. The first scenario is the most efficient placement scenario regarding to the DM-based 

determination which is in the third place through both information uncertainty and risk indexes. It 

verifies that the most efficient criterion must be diagnosed at first and then the decision-making 

process applied for sensor placement determination.  
 

3. Conclusion and Discussion 

In this research, reliabilities of sensors and sensor failure consequences are studied as well as 

considering the uncertainty of sensor information to select the efficient places for sensors. Sensors are 

added to the failure model of the system as the system’s components. Dynamic failure model is 

applied on functional model of system which reflects the nature of condition-based maintenance 

properly. Malfunction of sensors are categorized in missed-alarm and false-alarm types. Occurrence 

probability are estimated for proposed malfunctions and included in the system’s failure model. 

Economical loss consequences are obtained due to failure of sensors and accordingly, risk index is 

determined based on occurrence uncertainty, sensor reliability and related losses. Eventually, 

placement scenarios are ranked and the most efficient scenario is selected. 

The main achievement of this research is evaluation of mutual effect of information uncertainty, sensor 

reliability and risk of sensor failure in selecting efficient places of sensors. It is concluded that the 

results of sensor placement prioritization can be independent based on different criteria. It means that 

ignoring each of proposed criteria causes to select improper location for sensors.  

Considering a steam turbine as a case study, the effect of proposed indexes is studied separately. 

According to the low variation of indexes, DM factor is calculated through simultaneous consideration 

of them due to Shannon Entropy theory.  Finally, it is concluded that the DM-based ranking of 

scenarios is completely different and ignoring each of proposed criteria causes to select improper 

location for sensors. 
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