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Abstract: PSA softwares such a RiskSpectrum allow data uncertainties to be included by assigning
probability density functions (pdfs) to basic events representing System Structure or Component (SSC)
failures. This approach presents some difficulties in seismic risk assessment, as the fragility curves that
model the conditional probability of failure of an SSC in a seismic event are expressed as functions of the
seismic load, thus cannot be directly input into the PSA model. Also the uncertainty of the seismic load
on an SSC in an earthquake of given return frequency is not generally included in the fragility curve. In
this paper a one-step method is described for deriving the cdf for core melt probability using probability
distributions that accounts for both the SSC fragility curve and the uncertainty in the magnitude of the
seismic initiating event. The method is illustrated by an test case that employs a single-step Monte Carlo
method to derive the cdf of core melt frequency using a simplified seismic event tree for a PWR type
reactor. The method is compared to results obtained using a nested Monte Carlo method.
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1. INTRODUCTION

Earthquakes are movements of the Earth’s crust due to sudden release of accumulated energy [1]. The
impact of seismic events on human settlements and activities can be devastating thus conservative
design practices have been adopted in order to make structures and buildings more likely to withstand
earthquakes. However these ’good practices’, if correctly implemented, only guarantee a safety margin
against earthquakes of a pre-fixed ’design’ value. Probabilistic assessment methods provide a more
flexible tool in assessing the probability of buildings/structures to withstand an earthquake of any given
size.

In particular for nuclear power plants (NPPs), operating licences require that the plant to be designed
against a specified level of earthquake intensity, termed Safe Shutdown Earthquake (SSE). However
deterministic design criteria are not sufficient to guarantee the safety of the plant, this is because (a)
seismic events may influence many systems, structures and components within the power station and (b)
prediction of the intensity of seismic events is subject to large uncertainties.

A full probabilistic safety assessment can be a useful tool to capture the contribution to core melt
probability due to seismic events. Seismic probabilistic safety assessment models are developed starting
from the already-existing PSA models for internal events. The base case PSA is modified to include
the estimated frequency of the seismic initiating events and the probability of failure of system and
components under the postulated seismic event.

The usual objective of an S-PSA for a nuclear plant is to calculate the core melt frequency due to all
possible seismic events at a site, together with its uncertainty. This calculation is performed by first
finding the conditional core melt probability due to seismic events corresponding to a number of specified
frequencies, typically in the range 10−3/yr to 10−6/yr. These conditional core melt probabilities are
then combined with the hazard frequencies to give an overall core melt frequency due to all seismic
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events.

This work presents a method to include the seismic hazard uncertainty into the seismic PSA model. This
method is applied to a simplified PSA model and the results are compared with those obtained with a
complete method requiring two sets of Monte Carlo calculations. The structure of this paper is as follow:
section 2 reviews the literature on the treatment of uncertainties in seismic PSA, section ?? illustrates a
complete Monte Carlo method for uncertainty inclusion in seismic PSA, section 4 introduces an innovative
simplified method for uncertainty inclusion and finally the result section contains a comparison of the
results obtained with the complete and simplified method when applied to a test model.

2. SEISMIC PSA UNCERTAINTY QUANTIFICATION METHODS IN LITERA-
TURE

Zion NPP [2] was the first power plant for which a full seismic PSA was developed in the 80s. Since then
while seismic PSA is not required by many national regulatory bodies, guidance on how to develop a
seismic PSA has been published by IAEA [3], EPRI [4], and a number of power plants have undergone a
full seismic probability safety assessment, both in the United States [5] and in Europe [6]. However the
authors have not found a consistent treatment of uncertainties in seismic PSA. In the next 3 subsections a
brief overview of uncertainty methods for seismic PSA is presented.

2.1. Kaplan’s Discrete Probability Distributions

Kaplan and colleagues were the first to develop a method (discrete probability distribution - DPD method)
to consider the uncertainties in seismic PSA [7], [8]. In the DPD method, the probability density function
(pdf) of a random variable x, fx(x), is represented by a set of discrete probability values f1, f2, ..., fn

defined at n values of x: x1,x2, ...,xn, such that ∑
n
i=1 fi = 1. The discrete probability fi corresponds to

the probability of x lying in an interval surrounding xi i.e. to the area under the fx(x) curve within the
interval. Thus the set of doublets 〈 fi,xi〉 describes a discrete probability distribution that represents the
pdf fx(x). Kaplan observed that the DPD for a random variable that was a sum or product of independent
random variables could be found straightforwardly from the DPDs of these independent variables.

The DPD method was tested to find distribution Z whose random variable z is the the product of the
random variables of probability functions X and Y and the method was found equivalent to a Monte Carlo
method. The resulting product function Z obtained through both a Monte Carlo with 25 iterations and
DPD method using a number of intervals n = 5 for the DPD of both X and Y is shown in figure 1.

The main drawback of the DPD method for a PSA analysis seems to be the potentially large number
of Z calculations needed to find the Z distribution. Even for the very simple example of 2 components
and 5 frequency intervals described above, 25 Z values had to be calculated and re-ordered to find the Z
distribution. In a PSA, the Z function would correspond to a sum of many cutsets each of which could
consist of combinations of several failure probabilities. For a simple model consisting of 10 cutsets each
containing only one failure probability, the number of Z evaluations needed to find the DPD of Z would
be 510 = 9.8 ·106, if 5 intervals were used. Due to the large number of evaluations and the complexity in
reordering the list of values, the approach does not appear practical for use with conventional PSA model
which often involve many tens of cutsets each of which may consist of multiple failure events.

2.2. Westinghouse SHIP method

Maioli et al [9] describe the Seismic Hazard Integration Package (SHIP) software tool developed by
Westinghouse that is designed to quantify the seismic core melt frequency in NPPs. According to Ref



Figure 1: Plot of the cdf distribution of Z = XY obtained with Kaplanś method and with a Monte
Carlo method
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[9], SHIP takes as input data the cutset list developed from a full seismic PSA analysis performed with
a code such as RiskSpectrum of CAFTA. Fragility curves and their uncertainties are entered for each
of the seismic basic events in the cutset list, for a range of different seismic accelerations, and the
uncertainty distribution on the conditional probability of core melt (plant level fragility) is determined by
the SHIP solution algorithm. In a final step the plant level fragilities for different acceleration levels are
combined with the uncertain hazard curves probabilistically to find the overall core melt frequency and
its uncertainty distribution.

The solution algorithm used by SHIP software to determine the core melt probability (plant level fragility)
at different seismic acceleration levels is not explained in detail in published references, although Ref [9]
states that the final probabilistic integration of the fragility curves with the hazard curves is carried out
using Latin Hypercube simulation, which is a form of Monte Carlo sampling.

2.3. Hazard Lite

Hazard Lite is a proprietary software package that is designed to be used alongside RiskSpectrum to
perform seismic PSA calculations.

The Hazard Lite manual [10] gives a high-level description of the approach used to estimate the core melt
frequency due to seismic events. Hazard Lite is used in conjunction with RiskSpectrum to perform the
data preparation, but the fault tree/event tree solution is still performed within RiskSpectrum. In Hazard
Lite, the hazard curves and fragility curves are divided into acceleration intervals in which mean values of
hazard and component fragilities are specified. A PSA model is used to obtaining a core melt frequency
for each pga interval. In Hazard Lite calculation, the hazard curves are typically divided in about 8-10
discrete intervals by the analyst. The fragilities for different components are combined in cutsets, but it
is not clear from the manual whether the combination of fragilities is performed by Hazard Lite or by
RiskSpectrum.

According to the manual, Hazard Lite can be used in ”uncertainty mode”. This allows a family of
fragility curves to be found associated with different probability weightings. Similarly, a family of hazard



curves at different probability weightings are derived and used as input data. A probabilistic analysis
using the Monte Carlo sampling method is then used to find the probability distribution of the core melt
frequency.

3. COMPLETE METHOD FOR UNCERTAINTIES INCLUSION IN SEISMIC
PSA

As mentioned in the introduction the objective of seismic PSA is to find the core melt frequency, which
will be denoted by HCM. To obtain core melt frequency information about the frequency of seismic
events and the core melt probability of such events are needed. In fact core melt frequency is related to
probability of core melt by:

HCM =
∫ Hmax

0
PCM,HdH (1)

where Hmax is the maximum earthquake exceedance frequency deemed capable of causing significant
plant damage (often taken as 10−3/yr in practical studies), PCM,H is probability of core melt at exceedance
frequency H and dH is the variation of exceedance frequency for the seismic initiating event. Exceedance
frequency is the value traditionally used in seismic PSA and it is the frequency of event with acceleration
higher than a threshold value. Also the ground acceleration is normally the peak ground acceleration
(pga) [11].

To find the total core melt frequency the first step is to find the core melt probability at different seismic
event frequencies. Given a seismic event of excedance frequency H, its intensity is uncertain thus a
seismic event can be associated with a range of possible ground acceleration values at different probability
levels, represented by a probability density function faH(a). The core melt probability due to event H is
then given by:

PCM,H =
∫

∞

0
faH(a)Z(a)da (2)

where Z(a) is the conditional core melt probability for a seismic event of ground acceleration a. A PSA
fault/event tree solver is used to find Z(a) and its uncertainty distribution FZ(a) for different values of
a.

The values of faH(a j) in (2) can be found using the uncertainty distribution in the seismic magnitude
for the specified value of H. This uncertainty distribution is found by assigning a lognormal uncertainty
distribution to the acceleration associated with a given exceedance frequency. This approach is illustrated
in Fig 2 which shows the pga uncertainty distribution calculated for a seismic event of a 10−6/yr return
frequency, for the case of a UK site.

The FaH(a) lognormal distribution has the following equation

FaH(a) = Φ

(
log(a/AS)

βS

)
(3)

where AS is the median value of pga and β 2
S is the logarithmic variance of the pga for a seismic event

with an exceedance frequency H.



Figure 2: An example of uncertainty distribution on the peak ground acceleration for a value of
the exceedance frequency of 10−6/year

0 2 4 6 8 10 12
peak ground acceleration  (g) m/s2

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
x
ce

e
d
a
n
ce

 f
re

q
u
e
n
cy

 1
/y

rs

Hazard mean,  5% and 95 % curves

mean
95th percentile
5th percentile

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

peak ground acceleration

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

uncertainty

Equation (2) is then used to summate the results to find the total core melt probability PCM,F (and its
uncertainty) due to event H, using the Z(a) results and the known function faF(a).

Once PCM,H is established for a range of different exceedance frequencies, a final summation can be
performed to find the core melt frequency due to seismic events over the entire hazard curve for the
site.

A PSA software such as RiskSpectrum [12] is generally used to create a model an NPP in order to find Z,
the conditional core melt probability for a seismic event of pga a. The input to the PSA model is a set of
”basic event” data Pf i representing structures systems components (SSCs) failure probabilities. The PSA
model expresses the core melt event as a logical equation involving the sum of cutsets where a cutset is
defined as irreducible combination of elementary failures that together result in the core melt occurring.
When the probabilities Pf i are small, the function Ψ can be expressed in a multi-linear form:

Z(a) = Ψ(Pf 1(a),Pf 2(a), ...,Pf n(a)) =
m

∑
j=1

n( j)

∏
i=1

Pf i( j)(a) (4)

where each term in the summation gives the probability of the combination of failures represented by
the cutset; the integer m is the total number of cutsets in the problem, and n( j) is the number of events
in the jth cutset. (Note that in a seismic PSA the values of Pf i may not be small, as the seismic failure
probability of some components may be close to unity, so a modified form of (4) is used).

There are two ways in which uncertainty in Z arises in the PSA model namely: (i) the uncertainty in
the form of the function, i.e. structural uncertainty of the PSA model, and (ii) the uncertainty in the
magnitude of the component fragilities Pf i, i.e. data uncertainty. The PSA uncertainty considered in this
thesis is restricted to the latter type of uncertainty, model structure uncertainty being ignored.

For SSC failures caused by the seismic event, the uncertainty over the failure probability Pf i was
derived:



FPf i(Pf i) = 1−Φ(
1

βUi
log(

a
Ami

)− βRi

βUi
Φ
−1(Pf i)) (5)

where a is the pga and Ami, βRi and βUi are fragility parameters for component i. For the randomly
occurring failures, FPf i can be found by one of the standard approaches described in the literature [13].
To note that the value of FPf i depends on the value of a chosen, this dependence will be used in the next
section.

Using the formulae for the FPf i , the cdf of Z, denoted by FZ(a), can be found by assigning a value of a and
using the PSA model by a standard Monte Carlo method. This is straightforward in PSA models such as
RiskSpectrum that can be executed in Monte Carlo mode provided the fragility functions for each basic
event, FPf i , are entered as data.

3.1. Determination of PCM,H and its uncertainty

To use (2) to find the core melt frequency for a sismic event with a given exceedance frequency, the
integration must first be simplifiedd as a summation over n discrete intervals ∆a j:

PCM,H =
n

∑
i=1

[FaH(a j+1)−FaH(a j)]Z(ā j) (6)

In (6) a j+1 and a j are the pga values at the upper and lower limits of interval ∆a j and FaH is the
cumulative distribution function corresponding to the pdf faH . The term in square brackets corresponds
to the probability of the pga lying in the interval ∆a j and Z(ā j)) represents the mean conditional core
melt probability for pga values in the interval ∆a j.

Equation (6) expresses PCM,H as a weighted sum of n random variables Z(ā j) whose cdfs FZ(ā j can
be determined from Monte Carlo runs of the PSA model. Using the weighted sum, the uncertainty
distribution (cdf) of PCM,H , denoted by FPCM,H , can be found by performing a further Monte Carlo analysis
by sampling from the known cdfs FZ(ā j).

4. INNOVATIVE ONE STEP METHOD TO INCLUDE UNCERTAINTIES

As discussed in section 3 above, a calculation of the uncertainty distribution in the core melt probability
for a seismic event of a specified return frequency that takes into account uncertainties in both component
fragilities and pga associated with the event, is very involved, requiring two Monte Carlo calculations
with the PSA solver, each of which requires different input data for the basic events representing the
seismic failures.

In view of the difficulties with the complete calculation, and the drawbacks associated with alternative
approaches described in Section 2, a simplified method has been developed as part of this project in
which an approximation to the core melt probability uncertainty distribution FPCM,H can be achieved in a
single run of a PSA solver such as Risk Spectrum without using additional software. The simplification
proposed is to incorporate the seismic hazard uncertainty into the uncertainty distributions in component
fragilities that are input to the PSA solver as basic event data. The seismic initiating event is then treated
as an event of a given exceedance frequency, rather than an event of a specific pga magnitude. This
simplification allows the multiple nested Monte Carlo calculations previously needed to be replaced by a
single Monte Carlo run. However, the simplified method must only be regarded as an approximation, as



it introduces dependencies between basic events in the PSA model are not fully accounted for in the PSA
model solution.

The simplified Monte Carlo method is discussed below.

4.1. Formulation of basic event uncertainty distribution

Equation (5) does not take into account the fact that due to the imperfect knowledge of seismic events of
a specified return frequency, the pga a may itself subject to significant uncertainty. It is possible to modify
(5) to take into account the uncertainty in the seismic pga associated with an event of specified frequency.
To do this let’s note that EPRI [4] models the probability of failure (fragility) Pf of a component in a
seismic event with a pga of a, ignoring the epistemic uncertainty, is:

Pf = Φ

(
log(a/Am)

βR

)
(7)

where as previously Φ is the cumulative distribution function of the standard normal distribution, Am

is the median seismic capacity of the component and βR is the logarithmic uncertainty in the seismic
capacity due to randomness and a is the pga. To allow for the fragility uncertainty (epistemic uncertainty)
the median capacity Am is itself assumed to be uncertain, with a probability density function given by a
lognormal distribution with an overall median Amm and logarithmic uncertainty βU . Hence the cdf of Am

is given by:

FAm = Φ

(
log(Am/Amm)

βU

)
(8)

Then it is noted that the uncertainty in the pga associated with a seismic event of a given return frequency
is also assumed to follow a lognormal distribution. Therefore the cdf of a can be written as it was done in
(3).

Now (7) can be written as:

Pf = Φ(
logW

βR
) (9)

where W is a random variable defined by:

W = a/Am (10)

Thus W is the ratio between random variables a and Am each of which has a lognormal uncertainty
distributions. Now the pdf of a random variable that is the ratio between two random variables with
lognormal distributions is itself a lognormal distribution, with a median equal to the ratio of the medians
of the two variables and a logarithmic variance which is the sum of the logarithmic variances of the two
variables. Therefore using (8) and (3) it follows that the cdf of W is given by:

FW = Φ

(
log[ W

Ams/Amm
]

(β 2
S +β 2

U)
1/2

)
(11)



Using this result, the cdf of Pf can be found from (9) using the formula for the cdf of a monotonically
increasing function of a random variable with a known cdf. The result is as follows:

FPf = Φ

(
βRΦ−1(Pf )− log(As/Amm)

(β 2
S +β 2

U)
1/2

)
(12)

The FPf distribution for a component with Amm = 0.85, βR = 0.45 and βU = 0.1 at exceedance frequency
10−5/yr is illustrated in Figure 3.

Figure 3: Probability of failure distribution FPf obtained with simplified method at exceedance
frequency 10−5/yr
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The value of the failure probability Pf corresponding to percentile FPf can be found by inverting
(12).

Pf = Φ

 1
βR

log
(

As

Amm

)
+

√
β 2

S +β 2
U

βR
Φ
−1(FPf )

 (13)

4.2. Monte Carlo calculation of the cdf of the core melt frequency

Using Eq (12) to define the uncertainty distributions of the seismic basic events, a single run of a PSA
code such as RiskSpectrum in Monte Carlo mode will provide an estimate of the uncertainty distribution
of the core melt probability PCM,H associated with a seismic event of exceedance frequency H.

Thus, a single Monte Carlo is able provide an estimate of the probability distribution of the core melt
frequency that takes into account the uncertainties in both the component fragilities and the seismic
magnitude. This is clearly a much simpler calculation than the full Monte Carlo treatment described in
Section 3, which requires multiple Monte Carlo runs of the PSA model for different pga assumptions,
each of which requires different basic event input data, followed by a further Monte Carlo calculation to
combine the results.



The main drawback of the simplified method are the errors arising due to the introduction of dependencies
between seismic basic events in the PSA model. The errors introduce have been quantified and more
details will be available on the paper in preparation for ’Risk Analysis’ journal.

5. RESULTS

For the implementation of the method described in section 4, due to issues of commercial confidentiality,
a recent seismic PSA model for a nuclear power plant was not available for use in the current work.
Therefore, an early seismic PSA model found in literature was used to perform the illustrative PSA
uncertainty analysis. The particular model used was a seismic event tree model given by Kaplan [7]
developed for the Zion PWR power plant in the early 80s: according to Ref [4] the Zion PSA was the first
seismic PSA to be performed for a commercial nuclear power plant. In Kaplan’s model the seismic core
melt event is expressed as a logical equation involving ten basic events that represent seismically induced
failures of plant components. These ten basic events are listed in Table 1 together with the fragility data
applicable to each of the components.

Table 1: basic events and component fragility data for the Zion NPP Seismic PSA [7]

Basic event la-
bel

Basic event description Amm βR βU

E4 Service water pumps failure 0.63 0.15 0.36
E8 Failure of concrete shear wall of auxiliary build-

ing
0.73 0.30 0.28

E9 Refueling water storage tank failure 0.73 0.30 0.28
E10 Interconnecting piping/soil failure beneath reac-

tor building
0.73 0.2 0.33

E12 Condensate storage tank failure 0.83 0.28 0.29
E14 Collapse of crib house of pump enclosure roof 0.86 0.24 0.17
E17 125V DC batteries and racks failure 1.01 0.28 0.63
E21 Failure of service eater system buried pipe (48”) 1.40 0.20 0.57
E22 C piping (20”) 1.40 0.20 0.57
E26 Collapse of pressuriser enclosure roof 1.80 0.39 0.34

In Kaplan’s paper the value of βR for failure E10 (failure of interconnecting piping/soil failure beneath
reactor building) was not given so the author has assigned to βR the value of 0.2, which is considered
reasonable given the βR value of the other systems.

According to the Ref [1] model the core damage event ECM is related to the failure events in Table 1 by
the following Boolean expression:

The failure of the components listed in Table 1 leads to core melt if combined in the following Boolean
expression:

ECM = E4 +E8 +E10 +[E12 ·E9 +E22 ·E9 +E26 ·E9]+E14 +E17 +E21 (14)

where (+) signifies logical operator OR and (·) signifies logical operator AND.

6. IMPLEMENTATION OF SIMPLIFIED METHOD TO OBTAIN CORE MELT
PROBABILITY

The simplified MC method was implemented as a single algorithm in Python for the PSA model.



From the data set represented in table 1 and the data from the uncertainty of the hazard curves, for each
exceedance frequency value, it is possible to derive the distribution of the probability of failure for each
component FPf (from equation (12)).

To obtain the core failure cdf a Monte Carlo calculation was set up. The seven FPCM,H curves obtained by
applying the simplified method are illustrated in Fig 4.

Figure 4: Illustration of the 7 FPCM,H obtained with the simplified method
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The mean value µCM,H of PCM,H was obtained from the numerical results of the Monte Carlo through
statistical analysis. The mean values for for exceedance frequencies in the range 10−3/yr - 10−6/yr are
presented in Table 2:

6.1. Comparison of mean core melt probability values

The data represented in Table 2 is plotted in a frequency-probability space to easily compare the numerical
results. The plot is presented in Figure 5. Note that the frequency is on a logarithmic scale



Table 2: Mean core melt probability values (simplified method) for H in the range 10−3/yr - 10−6/yr

H 10−3/yr 3.16 ·10−4 10−4/yr 3.16 ·10−5 10−5/yr 3.16 ·10−6 10−6/yr
µCM,H 0 1.7·10−2 3.6·10−2 0.26 0.34 0.73 0.76

µCM,H,approx 1.35·10−5 0.007 0.012 0.27 0.38 0.95 0.98

Figure 5: Comparison of mean core melt probabilities obtained with no uncertainty, complete
method and simplified method
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Fig 5 shows how the simplified method gives results that closely resemble those of the complete method.
However to correctly understand the risk contributions due to seismic events however it is not enough to
visualise the results but it necessary to estimate the seismic core melt frequency HCM.

As in the present section the objective was to implement the numerical integration of Equation (??).
Because the curve is not easily fitted with a polynomial curve the trapezium rule has been used to find the
HCM. The formula for the trapezium rule is:

HCM = 0.5
7

∑
i=1

(Hi+1−Hi)(PCM,Hi+1 +PCM,Hi) (15)

The results of the application of equation (15) are presented in Table 3.
Table 3: Estimates of seismic core melt frequency

HCM simplified method 2.87 ·10−5

HCM complete method 3.42 ·10−5

7. CONCLUSION

In this work the comparison an complete method, described in section 3 and an simplified method,
described in detail in section 6 were presented. The simplified method is an innovative method developed
with the aim to provide a method that includes the seismic acceleration uncertainty and the fragility
uncertainty in the PSA but that requires only a single Monte Carlo process to obtain the core melt



probability. In this paper the simplified method was tested against the complete method using a simplified
PSA fault tree. The estimate mean core melt frequency for the two methods differs only by less than half
an order of magnitude.

The hope is that extensive testing to more realistic PSA models will confirm the accuracy of the model
and it will allow this method to be implemented more widely.
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