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Abstract: An initiating event that disrupts regular nuclear power plant (NPP) operation can result in 
numerous possible scenarios as time progresses depending on operator actions or uncertainties in NPP 
response. An approach that may be used to construct a real-time emergency guideline using dynamic 
event trees (DETs) to support the declaration of a site emergency and to guide off-site response is 
presented. In DET analysis, alternative scenarios or pathways are initiated by branching points in the 
tree as the accident progresses in time for which branching probabilities are assigned. The temporal 
behavior of the early stages of a severe accident as reflected by DETs and as observed from variables 
that can be monitored by NPP operators are used to estimate the likelihood of different levels of offsite 
release of radionuclides based on deep learning (DL) techniques with a training set of 
MELCOR/RASCAL scenarios. The ability of the resulting guideline to predict the likelihood of 
different levels of consequence is assessed using a separate test set of MELCOR/RASCAL scenarios.    
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1.  INTRODUCTION 
 

In the event that an accident occurs at a nuclear power plant (NPP), the plant staff is responsible 
for returning the NPP to a safe stable state. The staffs are supported in taking these actions with 
Emergency Operating Procedures (EOPs) for which they receive extensive training in NPP simulators.  
If there is the potential for a significant release of radioactive material into the environment, the NPP 
manager must declare a level of site emergency. However, offsite response, such as evacuation, is 
ordered not by NPP personnel but by the State (and potentially the governor).  In making offsite response 
decisions, the State personnel must rely heavily on the expertise of NPP personnel, their understanding 
of the current state of the NPP, and their projection as to the likely outcomes of the event.   

All NPPs in the U.S. have performed Level 1 probabilistic risk assessments (PRAs) to estimate 
the frequency of events that may lead to core damage.  Some PRAs have been extended to examine not 
only core damage frequency but also the progression of severe accident scenarios including the potential 
for containment failure and the release of radioactive material to the environment (Level 2 PRA) and 
the subsequent radiological exposure to members of the public (Level 3 PRA).  These studies have been 
used to develop severe accident management guidelines (SAMGs) that need to be followed by the plant 
personnel to assist in the management of the severe accident.  SAMGs, in general, are based on a very 
limited set of accident scenarios and do not take into account the variability of response of an event 
associated with modeling uncertainties and operator actions.   

The dynamic event tree (DET) approach [1] was developed to improve the ability of PRA to 
more realistically account for the interaction of uncertainties in accident progression.  The DET starts 
with the occurrence of the initiating event.  Alternative scenarios or pathways are initiated by branching 
points in the tree as the accident progresses in time for which branching probabilities are assigned. If 
the accident is arrested prior to core damage, the radiological consequences of the scenario will be 
negligible. Similarly, if a severe accident is controlled prior to containment failure, the consequences 
will be smaller than if the containment fails. 

In current practice, the declaration of a site emergency is based on the identification of the type 
of event sequence early in the accident. An online support tool (OST) that can assist the NPP personnel 
to assess an event sequence probabilistically as an Unusual Event (UE), an Alert, a Site Area Emergency 
(SAE) or a General Emergency (GE) as the accident evolves can reduce the level of exposure of the 
population, as well as reduce the negative impacts of possible evacuation.  
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Thus, the objective of OST would be two-fold: i) to support the declaration of site emergency, 
and, ii) to provide technical guidance to the State in undertaking emergency response activities 
associated with evacuation, sheltering in place and the distribution of the chemical KI for events with 
large radioactive iodine doses to prevent excessive thyroid loading.   The OST presented in this paper is 
being developed taking advantage of continuing improvements in processing power of computers and 
the state-of-the-art in artificial intelligence (AI) techniques.  The inputs to the tool are key observable 
parameters available to the operator from the plant and environmental instrumentation. The output is the 
projected levels of radiological exposure to members of the public and their likelihoods.   

The accident model used to train the OST is based on scenarios generated in an extensive DET 
study performed for a station blackout (SBO) in a 3-loop pressurized water reactor (PWR) [1].  The 
objective of the study [1]for which the scenarios were generated was to demonstrate the seamless 
transition between Level 2 and Level 3 PRA (see Section 3). Clustering techniques for post-processing 
and unsupervised learning (see Section 2.1) were used to interpret the massive data generated from the 
MELCOR computer code [2] used to simulate the consequences of SBO. The analyses were limited to 
the range of potential outcomes from loss of offsite power scenarios followed by failure of emergency 
diesel generators.  In the present study, deep learning (DL) [3], which is a subset of machine learning 
algorithms with multi-layer networks is implemented by means of the computer code Caffe [4] (also see 
Section 2.2) to develop the OST. The DET study that was performed in [1] was based on the use of 
MELCOR under the management of the Analysis of Dynamic Accident Progression Trees (ADAPT) 
[5] developed previously by The Ohio State University in collaboration with the Sandia National 
Laboratories.  The results of the DET study [1] led to the generation of two sets of data.  The first set of 
2656 scenarios is used in this study to train, test, and validate the OST.  The second set of data consisting 
of 775 scenarios will be used to test or validate the robustness of the OST in future work.  

Two different modes can be used to analyze the set of scenarios when dealing with nuclear 
transients: end state, and transient analysis [6, 7]. The work presented in this paper can be categorized 
as transient analysis because the temporal behavior of the early stage of the accident is used to examine 
possible ways the NPP state can evolve and predict magnitude and likelihood of offsite radiological 
exposure. Section 2 overviews the features of DL relevant to this study. Section 3 describes the case 
study under consideration. Sections 4 and 5 present the results and conclusions of the study, respectively. 

 
2.  DEEP LEARNING: OVERVIEW 
 

AI was introduced in 1955 by John McCarthy et al [8] as a parallel to the human decision-
making process, with the term AI coined in the first AI conference in 1956 in Dartmouth Conference. 
The general definitions of AI can be grouped into 4 categories: thinking humanly, thinking rationally, 
acting humanly, and acting rationally [8]. In 1957, Allen Newell et al. programmed ‘Logic Theorist’ 
which was the first AI program [9] and which was designed to solve simple logic problems with 
traditional mathematical procedures [10].   

DL is a branch of AI that mimics the way the human brain works to analyse problems. The DL 
technique used in this paper is applicable to temporally continuous datasets such as video, speech 
recognition and dynamics which makes it suitable for analysing temporal characteristics of event 
evolution in an NPP.  DL can either be supervised or unsupervised. A simple example of unsupervised 
learning is illustrated in Figure 1 [11]. A computer cannot a priori recognize whether the object in the 
image is a person or an animal. DL selects certain parts from the image that are used as input pixels or 
the visible layer. Then, through a series of hidden layers, it extracts the features from the image of the 
previous layer and learns feature in a hierarchical manner from pixels to identify and train all layers 
jointly. After training with multiple examples, the resulting algorithm can be used to identify that the 
image is that of a person with higher probability. 
 
3.  CASE STUDY 
 

As indicated in Section 1, this study uses the database previously generated from [1] with the 
ADAPT software to manage the DET generation following the SBO. Failure/non-failure of the turbine-
driven auxiliary feedwater (TDAFW) pump determines whether the event is recognized as a short-term 
SBO or a long-term SBO. Following the failure of AFWS, power to emergency equipment is supplied 
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by DC batteries whose depletion time was treated as a probability distribution. The study [1] has 
generated a few thousand scenarios representing different branching combinations. For each scenario, 
radionuclide release fractions and their probabilities are known. 

The composition of the data set is described in Sections 3.1 and 3.2. The details of dataset 
selection are explained in Section 3.2. The DL software overview is presented in Section 3.3.  

 
Figure 1 A machine goes through its own imaging processing procedure to derive information on the 

type of object in a figure [11] 

 
 
3.1. Operator variables 
 

The severe accident code MELCOR predicts the behavior of a large number of covariates 
associated with the thermal-hydraulic behavior of the accident.  However, the operator only monitors a 
small number of variables.  Thus, in determining the state of the NPP, the AI model must rely only on 
the variables that are actually monitored. A list of available observable parameters is tabulated below in 
Table 1 based on information provided by the PWR Owner’s Group for the development of SAMGs 
[12]. 
 

Table 1 Critical parameters and instrumentation used for OST 

Parameter 
Primary 

purpose/information 
provided 

Measurement Method Alternate Method 

Steam Generator (SG) 
Water level 

• Reactor Coolant 
System (RCS) heat 
sink available 

• Creep rupture of SG 
tubes possible 

• Wide range SG level* • Narrow range SG 
level 
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• Fission product 
scrubbing for faulty or 
leaking SG tubes 

SG Pressure 

• Creep rupture of the 
SG tubes possible 

• Ability to inject into 
the SGs 

• SG secondary 
pressure* 

• TDAFW pump header 
pressure (only for 
select SGs) 

 RCS Pressure 

• Ability to inject into 
the RCS 

• High Pressure Melt 
Ejection possible 

• Uncontrolled opening 
in the RCS 

• Wide Range RCS 
pressure 

• Pressurizer pressure 
• Accumulator pressure 
• Charging pump of 

LHSI pump dis-charge 
pressure 

Core Temperature 

• Transition from EOPs 
to SAMG 

• In-vessel recovery of 
core cooling 

• Core exit 
Thermocouples 
(CETCs)* 

 

RCS Temperature 
• Understanding earlier 

stages of accident 
progression 

• CETCs* [same as the 
variables above] 

• Resistance 
Temperature Detector 
(RTDs) [Hot Leg or 
Cold Leg] 

RCS Water Level 
• Understanding earlier 

stages of accident 
progression 

• Reactor Vessel Level 
Indication system 
(RVLIS) 

• Ex-core neutron 
detectors 

Containment Water 
Level 

• Flooding of equipment 
and instruments 

• Safety injection of 
spray recirculation 
possible 

• Spillover to the reactor 
cavity 

• Ability to quench 
dispersed core debris 

• Wide range 
containment water 
level 

• Refueling water 
storage tank  level 

• Narrow range sump 
level 

Containment Flammable 
Gas Concentration 

• Containment gas 
flammability 

• Containment hydrogen 
monitor 

• Sampling 
• Calculational aids 

Containment Pressure • Containment over-
pressurization 

• Wide range 
containment pressure 

• Containment 
temperature 

*Three monitored variables each 
 

The scenarios used in this study are characterized using the 14 monitored variables in Table 1. 
These variables are obtained from MELCOR for 1000 time divisions during the simulation. Each 
scenario is represented by the matrix, 14×1000. For each scenario, a RASCAL analysis [13] was also 
performed to determine the associated offsite doses. To simplify the analysis, two key radionuclides, 
Cs-137 and I-131 were used to characterize environmental impacts. A single pre-defined meteorology 
was used.  In an actual application of OST, the meteorology would be known at the time of the event.  
The RASCAL code is used to assess the radiation dose as a function of time that would be experienced 
by an individual located within two miles and ten miles of the plant.   
 
3.2. Dataset selection 
 

For the present study, the 2656 scenarios obtained from [1] (see Section 1) were labeled as the 
following: i) Total Effective Dose Equivalent (TEDE) is greater than 10 rem (Bin over 10rem), and, ii) 
TEDE less than or equal to 10 rem (Bin 0-10rem). Using this classification scheme, 116 scenarios were 
found to fall in Bin 0-10rem and the remainder in Bin over 10rem.  186 scenarios were selected as the 
training set and 52 testing set.   The rest of the data were used for validation. 2656 MELCOR realizations 
cover 2% of the total probability space.  Given the occurrence of the initiating event, 98 percent of the 
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time the system would be recovered with no offsite release based on the dynamic analysis that was 
performed. 

Instead of random sampling scenarios for training and testing, a data mining process was utilized 
for clustering the data in Bin over 10rem and Bin 0-10rem. Clustering techniques are particularly useful 
when identifying groups of scenarios with similar behavior or when classifying their characteristics. In 
this paper, the mean shift methodology (MSM) is adopted for clustering. The main advantage of MSM 
is that it is capable of handling large data sets The MSM algorithm assigns each point (in our case 
snapshots of scenarios in their state space at each time point) to the cluster centroid depending on the 
bandwidth of the chosen kernel through a set of local averaging operations [14]. This procedure is 
iterated until all the points in the dataset obtain the assigned clusters. Figure 2 and Eq. (1) illustrate 
clustering of two-dimensional data into a number of bins with radius or bandwidth ℎ. Intuitively, larger 
bandwidth generates a fewer number of clusters. 

 
Figure 2 Determination of clustering center (𝑆𝑆𝑐𝑐) using Mean shift algorithm (𝑆𝑆𝐴𝐴: original point, 𝑚𝑚(𝑆𝑆𝐴𝐴): 

center of mass or weighted average) in T vs. p [15] 
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In Eq. (1), 𝑥𝑥𝑖𝑖  is a data point (scenario) of location in the space of possible scenarios and 𝐼𝐼 represents the 
total number of scenarios. 𝑆𝑆𝐴𝐴 is the initial estimation of location (original point).  A Gaussian kernel 
𝑔𝑔(�⃗�𝑥) is used for weighing the distance between 𝑆𝑆𝐴𝐴 and 𝑥𝑥𝑖𝑖  is defined by 

 

𝑔𝑔(�⃗�𝑥) =  𝑒𝑒
−‖�⃗�𝑥‖2

ℎ2� . (2) 

The procedure is repeated until the centroids of clusters converge within a given error. From each cluster, 
the centroid and specific scenarios within that cluster can be identified. In this study, Bins over 10rem 
and Bin 0-10rem use the same bandwidth. Implementation of MSM on the data from [1] has led to 67 
clusters for Bin over 10rem and 30 clusters for Bin 0-10rem. Figure 3 shows the response of one of the 
monitored variables, containment basement pressure, for all clusters in Bin over 10rem. The solid lines 
represent the centroid of each cluster and the different colored shades show the whole spectrum in each 
cluster. 
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Figure 3 Containment basement gauge pressure for all clusters  

 
 
 
 
3.3. Software overview: Caffe 
 

An open source computer code Caffe [16], which is a  framework developed by Berkeley Vision 
and Learning Center (BVLC) with a primary focus on pattern recognition of visual objects, is used for 
the development of OST. Caffe is particularly attractive for a problem with a large set of data as it is 
capable of processing over 60 million images per day with a PC equipped with NVIDIA K40 GPU. The 
code is written in C++ and also developed for Matlab and Python. Expressive architecture can be easily 
utilized with input parameters and doesn’t require hard-coding [4]. 

The simplest architecture of the neural network that can be generated by Caffe consists of one 
hidden layer between input and output layer. The convolutional neural network (CNN) is one of the 
well-known deep neural networks. The deep neural network is a neural network with multiple hidden 
layers between input and output layers [17]. A CNN can stack with one or more convolution layers and 
one or more fully connected layers at the ends. The main parameters of a convolution layer are referred 
to as filter parameters. The structure of the filter is width × height × depth. The width and height are 
user-defined parameters and the depth extends over the input volume. Each of the filters will produce a 
2-D activation map and stacked activation maps will be the input to the next layer [11]. The fully 
connected layer is a type of layer which has full connections between previous and current node. The 
input and output can be treated each as a vector that the fully connected layer is not spatially located. 
The deep CNN used in this paper involves a modification to the architecture from Alexnet, which is one 
of the verified models from the Caffe model zoo [4, 18]. The Alexnet contains eight layers with weights, 
five convolutional layers, and three fully connected layers. The overall architecture of our CNN consists 
of five layers and it can be seen in Figure 3. The first two layers are convolutional layers and three fully 
connected layers are stacked aside. The last fully connected layer is producing the resultants of 2 output 
labels which are Bin 0-10rem and Bin over 10rem. The first convolutional layer filters the input data 
with 20 kernels of size 1 × 1 × 1 with a stride 1. Then, the output of the first layer is taken as an input 
of the second layer and the second convolutional layer filters with 40 kernels of size 5 × 5 × 500. 
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Figure 4 The architecture of the network 

  
 
4.  Results 
  
 The scenarios are defined in terms of variables listed in Table 1 whose values were selected at 
1000 times during the simulation time. The set of scenarios available for this case study was partitioned 
into three sets, the training set (consisting of Bins over 10rem and 0-10rem), testing set (consisting of 
Bin over 10rem and Bin 0-10rem), and validation set (Bin over 10rem) as indicated in Section 3.2. For 
the set of exposures in the proximity of the plant (within two miles) the Bin over 10rem of the training 
set was constructed by random sampling 3% of each cluster (see Section 3.2 for the clustering scheme) 
and Bin  0-10rem by random sampling 90% of each cluster for balancing the number of scenarios in 
each bin. The remaining scenarios in Bin over 10rem constituted the validation set. Thus, the total 
number of scenarios in the training set is 186, with 52 for testing, and 2418 for validation (Table 2). In 
a similar manner for the region extending to 10 miles from the plant, Bin over 10rem of the training set 
was constructed by 21% of each cluster and Bin 0-10rem by 90% of each cluster. The total number of 
scenarios in training, testing, and validation is for this case are tabulated in Table 3. 
 

Table 2 Data distribution of the training, testing, and validation sets for exposures within 2 miles 

Train Test Validate Total 
Bin  over 10rem Bin 0-10rem Bin over 10rem Bin 0-10rem Only Bin over 10rem 

96 90 26 26 2418 2656 

Table 3 Data distribution of the training, testing, and validation sets for exposures within 10 miles 

Train Test Validate Total Bin  over 10rem Bin 0-10rem Bin over 10rem Bin 0-10rem Only Bin over 10rem 
450 421 69 69 1647 2656 

 
 As mentioned in Section 3.3, the CNN used in this study was based on Alexnet which competed 
in the ImageNet Large Scale Visual Recognition Challenge in 2012 [18]. This deep CNN consists of 
five convolutional layers, three max-pooling layers and three fully-connected layers with 1000 different 
classes. The Alexnet network has been modified to apply to our study. Our deep neural network has two 
convolutional layers with each max-pooling layer and three fully-connected layers with 2 different 
classes as shown in Figure 4. In order to account for the randomness caused by the initialization of 
weights and bias in Caffe, we repeated the experiments to improve accuracy.  
 The resulting number of false negatives (FNs) (belonging to Bin over 10rem but labeled as 
belonging to Bin 0-10rem), false positives (FPs) (belonging to Bin 0-10rem but labeled as belonging to 
Bin over 10rem), true negatives (TNs) (belonging to Bin 0-10rem and labeled as belonging to Bin 0-
10rem), and true positives (TPs) (belonging to Bin over 10rem and labeled as belonging to Bin over 
10rem) for testing, validation, and testing plus validation cases are presented in Table 4. In the testing 
set of 2 mile transport, there were 6 false positives out of a total of 2470 scenarios and the rest of data 
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were labeled correctly. The validation set of 2 mile transport contains only one mislabeled scenario, a 
FN, which was incorrectly labeled as Bin 0-10rem instead of Bin over 10rem. However, for the 10 mile 
transport case, the CNN is less accurate than for 2 mile transport. There were 6 FN and 6 FP out of a 
total 138 testing scenarios. 151 FN are in the validation set. Note that there are no FPs and TNs in the 
validation set for either the 2 mile or 10 mile transport cases. Figure 4 and 5 show the testing plus 
validation set of TPs, TNs, FPs, and FNs for 2 mile and 10 mile transport. Note that the numbers of FNs, 
FPs, and TNs are substantially smaller than TPs. In Figures 5 and 6, the bar graph of a contingency table 
(Part (a)) and the one with normalized probability as obtained from the DET analysis (Part (b)) of each 
category are presented. To the operator of the plant who is responsible for ordering a site emergency 
and advising state officials on whether or not to order an evacuation, Part (b) of Figures 5 and 6 showing 
the probabilities of different consequence levels is of greater relevance.  
 

Table 4 Contingency table of testing, validation, and testing + validation set 

 FN 
 

FP 
 

TN 
 

TP 
 2 mile 10 mile 2 mile 10 mile 2 mile 10 mile 2 mile 10 mile 

Testing 0 8 6 10 20 59 26 61 
Validation 1 143 0 0 0 0 2417 1504 

Testing + Validation 1 151 6 10 20 59 2443 1565 

Figure 5 Testing + Validation set (2 miles) 

(a) Graphical representation of  
contingency table                            

 

(b) Contingency table with normalized 
probability 
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Figure 6 Testing + Validation set (10 miles) 

(a) Graphical representation of  
contingency table                            

 

(b) Contingency table with normalized 
probability 

 
  

We have also determined the precision, recall, f-measure, and accuracy for this case study. 
These three parameters are computed, respectively, using Eqs. (3) through (6) [19]:  

Precision =  
#𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝

#𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝
 (3) 

Recall =  
#𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝

#𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒 𝑛𝑛𝑒𝑒𝑔𝑔𝑓𝑓𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝
 (4) 

f −measure =  2 ∙  
𝑃𝑃𝑡𝑡𝑒𝑒𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 × 𝑅𝑅𝑒𝑒𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓
𝑃𝑃𝑡𝑡𝑒𝑒𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 + 𝑅𝑅𝑒𝑒𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓

 (5) 

Accuracy =  
#𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 +  #𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑛𝑛𝑒𝑒𝑔𝑔𝑓𝑓𝑡𝑡𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝

# 𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑓𝑓
 (6) 

 

Results of Equations. (3) - (6) are tabulated in Table 5. Validation row in Table 5 shows that 
this experiment has resulted in over 90 % accuracy for both case studies. We also observe from Table 5 
that the DL algorithm we have developed is superior in finding the scenarios that would lead to 
undesirable radiological impact (Bin over 10rem) rather than which do not (Bin 0-10rem). Note that 
recall of testing is equal to 1 because a FN does not exist. For a similar reason, the precision of validation 
is 1 because FPs do not exist.  

Table 5 Accuracy, precision, recall, and f-measure of testing and validation set 

 Accuracy 
 

Precision 

 

Recall 

 

f-measure 

 
2 mile 10 mile 2 mile 10 mile 2 mile 10 mile 2 mile 10 mile 

Testing 0.8846 0.8696 0.8125 0.8592 1 0.8841 0.8966 0.8714 
Validation 0.9996 0.9132 1 1 0.9996 0.9132 0.9998 0.9546 

Testing + Validation 0.9972 0.9098 0.9976 0.9937 0.9996 0.9120 0.9986 0.9511 
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5.  CONCLUSION 
 

In this paper, we present a real-time tool to assist the NPP operators in predicting the likelihood 
of future states of the NPP to support the declaration of a site emergency and to assist in the emergency 
response. DL techniques are used to project the radiological outcomes to the public. The input data to 
the tool consisted of the temporal behavior of monitored data in the control room along with the 
training of the tool using the MELCOR/RASCAL codes. The data are from the simulation of 
an actual accident scenario with possible outcomes.  The applied DL network was modified from 
Alexnet. The results show that the network achieves 99.76% of precision, 99.96% of recall and 0.9986 
f-measure for the 2 mile transport case and 99.37% of precision, 91.20% of recall and 0.9511 f-measure 
for the 10 mile transport case which indicate that the DL network developed in this paper could produce 
a very credible OST.  
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