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Abstract: The probabilistic analysis of possible piping rupture or significant loss of coolant accident 

(LOCA) is a complex problem as it involves many mechanisms and generates low to extremely low 

probabilities of events. This topic is of particular interest in the nuclear industry and a conjoint effort 

between the US NRC and EPRI over the last 10 years has led to the development of the Extremely 

Low Probability of Rupture (xLPR) code to assess probability of rupture in nuclear piping systems.  In 

this paper we focus on using the code in conjunction with statistical approaches to increase confidence 

in the results, which is a necessary aspect of any risk-informed approach. One of the step is to 

understand the uncertainty in the output of interest and identify the most influential parameters 

responsible for this uncertainty. We present here a strategy based on a suite of regression techniques to 

rank the parameters importance that can be used in conjunction to sampling and importance methods 

(in an iterative fashion) in order to converge to stable and well understood results. 
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1 INTRODUCTION 

 

Despite the aging of nuclear infrastructures and resulting uncertainties, they are required to perform in 

a highly reliable manner. Of particular interest is the assessment of piping rupture or a possible 

significant loss of coolant accident (LOCA) in a nuclear power plant. Particularly, the occurrences and 

evolution of cracks that could occur due to several conditions (Primary Water Stress Corrosion 

Cracking or Fatigue) on welds that join two dissimilar or similar metal pipes is considered as a 

potential risk leading to such adverse condition. While the US NRC does not regulate on risk it does 

relies on risk-informed approach in order to understand the consequence of uncertainty and support the 

conclusion drawn. 

 

To this end the US NRC, in conjunction with EPRI, has developed the Extremely Low Probability of 

Rupture (xLPR) code to assess probability of rupture in nuclear piping systems [1] [2]. This code 

models the likelihood and evolution of potential cracks in the weld. It considers several mechanisms 

and plant properties including crack initiation, growth, coalescence and stability, weld residual stresses 

and materials properties. The code also considers potential human intervention such as mechanical 

and/or chemical mitigation as well as the impact of in service inspections and leak detection. Due to 

the defense in depth approach, and the regular inspection schedule implemented coupled with constant 

measurement to detect potential leakage, the probability of rupture or other adverse events such as 

LOCA is expected to be extremely low (in the order of 10-5 or lower) that may render direct Monte 

Carlo method impractical. 

 

In a proposed joint paper, we will discuss different sampling and optimization strategies that are 

required to estimate, with confidence, the probabilities of failure events. When these probabilities are 

extremely low, one has often to rely on optimization methods in order to concentrate on the area of the 

input space that cover those adverse events. Such approach requires one to know a priori which input 

variables are important (in terms of uncertainty) and how they affect the selected output of interest. 
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One of the purposes of sensitivity analysis is to determine such influences and rank the uncertain 

parameters [3]. As such, this paper presents strategy based on a range of regression methods, to 

estimate the impact of input uncertainty, including non-monotonic and conjoint influence [4]. The 

latter is fairly common in complex systems such as the ones considered by the xLPR code, involving 

many mechanisms and the interaction of influential random variables. Furthermore, while the physics 

studied is usually monotonic, the addition of mitigation techniques and inspections introduce non-

monotonicity (the most obvious failures will be detected and repaired). The results of the regressions 

are then combined with expert elicitation to better understand the impact of uncertainty and focus on 

the most important contributors: when a large number of potentially uncertain inputs is considered (up 

to 300 or more) it is often necessary to revisit the drivers of the problem to increase confidence in the 

results. 

 

Furthermore, once the important input parameters have been identified, a handful can be selected as 

candidates for importance sampling or adaptive sampling in order to estimate these extremely rare 

events.  

 

2 CONTEXT OF THE ANALYSIS 

 

The problem we are investigating numerical simulation of complex physics in engineered systems 

composed of many inputs and interwoven mechanisms. Furthermore, while the consequences of the 

events under consideration are serious, they represent extremely rare events. 

 

The physics is usually fairly monotonic (i.e, the events happens only if a high or low threshold is met) 

however with strong conjoint influence expected. Furthermore human interaction, either as a response 

(such as inspection of the system, detection of potential issues via sensors) or preemptively (such as 

mitigation), introduces potential non-monotonicity and disjoint response spaces in the areas of interest 

(as most obvious issues are usually quickly detected) 

 

Some of the inputs may affect different parts of the analysis, in a different way. As a reults, extreme 

values can be both beneficial and detrimental depending on the sub-model considered which makes it 

difficult to assess prior yo performing the analysis the overall impact of such extreme values. 

 

Due to the large uncertainties present in the system whether in the inputs considered or the model 

used, a probabilistic approach is needed to support any risk informed decision making. However these 

complex models are usually expensive in term of running time and memory requirements, which 

limits the number of runs that can be performed in a Monte Carlo approach. 

 

All of these requirements and constraints underline the need for an efficient method to identify the 

most important factors in order to focus on what is really driving the uncertainty of the output of 

interest and be able to optimize the analysis toward these factors. 

 

3 REQUIREMENTS FOR THE SENSITIVITY ANALYSIS 

 

Sensitivity Analysis (SA) is the analysis of the importance of the input uncertainty on the 

output uncertainty [5] [6]. It is traditionally used to rank the uncertain inputs and parameters 

by importance, either to reduce this uncertainty or to select where importance sampling 

should be applied to increase confidence in the results. 

 

Following the constraints listed in the previous section, the SA technique needs to have 

certain features in order to be efficient: 

 It needs to be able to capture different patterns, both monotonic and non-monotonic 
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 It also needs to capture the influence if input interactions which we call the conjoint 

influence 

 It should be able to handle large number of uncertain inputs (as high several hundreds) 

 Due to the rare nature of the events, the method has to be efficient and robust even 

when few realizations lead to the adverse condition 

 It also as to be fast enough so it can be applied to a large range of outputs 

(surrogate/intermediate outputs may have to be considered) if no adverse events occur. 

 It has to be strongly adaptable. In our experience there is no universal approach that 

would work for any case, thus the approach needs to be flexible enough so it can 

change when needed. 

4 METHODOLOGY 

The method we propose relies on a suite of regression techniques [4]. They are run for each 

output of interest to estimate the influence of the input uncertainty toward this output. Results 

are then aggregated into a single number used to rank the inputs by their importance. The 

quantitative result are supported by scatterplots which are more qualitative and visual.  

4.1. Selected regression techniques 

4.1.1 Linear or Rank Regression 

The linear regression is one of the oldest most known and widely used regression technique. 

The rank regression is a linear regression on rank transformed input and output variables 

under consideration. The form of the final regression model is additive (no conjoint influence) 

and as follow: 

𝑌 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑛𝑋𝑛 = 𝑎0 + ∑ 𝑎𝑖𝑋𝑖 + 𝜀

𝑛

𝑖=1

= �̅� + 𝜀 (1)  

where 𝜀 represents (for this regression and the subsequent ones) the difference between the 

output of interest Y its estimate  �̅� . 
 

When the number of inputs is large, stepwise regression is a useful technique as it adds the 

input variables one at a time with an inclusion and exclusion criteria. It thus avoids overfitting 

the model by including more input variables than necessary. The stepwise approach starts 

with trying to find the best fit with only one parameter by testing all possible input 

parameters. It then builds up from this initial fit by selecting the best fit with two parameters, 

conditional upon keeping the first parameter, and so on. A stopping criterion is set via a 

generalized cross validation approach. Rank regression is effective in capturing monotonic 

relationships between inputs and outputs. The non-parametric aspect makes it less sensitive to 

outliers (which may be desired or not desired depending on this example). This technique is 

limited to additive models where no conjoint influences are considered and may perform 

poorly on non-monotonic relationships. 

 

Three metrics are used for each input variable included in the rank regression results. Two are 

based on the coefficient of determination, noted conventionally R2, which represents the 

amount of variance explained by the regression model. The coefficient of determination is a 

normalized value which varies between 0 (no variance explained) and 1 (all the variance 

explained). 

 𝑅𝑖𝑛𝑐
2 (𝑖) reports the cumulative coefficient of determination of the rank regression 

model when the  𝑖𝑡ℎ variable has been added (that includes all variables up to the  𝑖𝑡ℎ 

for the model). 
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 𝑅𝑐𝑜𝑛𝑡
2 (𝑖) reports the incremental gain in R2 when the  𝑖𝑡ℎ variable has been added 

compared to the model with (𝑖 − 1)variables. While this value does not correspond 

exactly to the fraction of variance in the output explained by the variance in the  

𝑖𝑡ℎinput, it remains a good estimate. 

 𝑆𝑅𝐶(𝑖) reports the value of the standardized rank regression coefficient for 𝑖𝑡ℎ 

variable. This value, also an indicator on the strength of the linear relation (or 

monotonic relation – we talk then of SRRC for standardized rank regression 

coefficient) between the  𝑖𝑡ℎ variable and the output of consideration. This also 

indicates the direction of the linear trend either positive (high values of input 

associated with high values of output) or negative (high values of input associated 

with low values of output). 

4.1.2 Response surfaces 

The other regressions are treated differently, as their models do not allow for a direct estimate 

of the contribution to each individual input to the variance of the output. As a result, they are 

used as response surfaces first with their quality estimated based on the coefficient of 

determination (𝑅2) of the final model. This model is then used to generate a large number of 

realizations to estimate the variance decomposition using the Sobol decomposition. This 

technique estimates the contribution of each input and their potential interactions (i.e., 

conjoint influence) via an integral decomposition of variance [17]. It requires a large number 

of realizations (tens to hundreds of thousands) to be accurate and cannot usually be applied 

directly to the computationally demanding models that we consider. The regression 

techniques however create analytical models that can be run a large number of times 

relatively quickly (seconds or minutes). The Sobol decomposition assesses the importance of 

each variable (according to its uncertainty) to the variance of the output considered. The 

quality of the estimate is strongly dependent on the quality of the regression model and 

caution should be applied when the 𝑅2 value is relatively low.  

 

The Sobol decomposition leads to different measures of effect than those used in stepwise 

linear regression. The two metrics selected for this analysis are described below: 

 𝑆𝑖, the first order sensitivity index for variable 𝑖, characterizes how much of the 

variance of the selected output is explained by the input parameter under 

consideration by itself (i.e., without conjoint influence). This index therefore can be 

assimilated to the 𝑅𝑐𝑜𝑛𝑡
2  from the linear or rank regression approach. 

 𝑇𝑖, the total order sensitivity index for variable 𝑖,  characterizes how much of the 

variance of the selected output is explained by the input parameter alone and its 

interaction with the all the other uncertain inputs (i.e., conjoint influence). It has no 

analogue in the rank regression model as the additive model does not capture conjoint 

influences. 

 The difference (𝑇𝑖 − 𝑆𝑖) provides an estimate of the conjoint influence for a single 

input on the output considered. 

 

4.1.3 Recursive partitioning 

Recursive partitioning regression is a regression method based on regression tree techniques. 

A regression tree splits the data into subgroups in which the values are relatively 

homogeneous. The regression function is constructed using the sample mean of each 

subgroup. This approach results in a piecewise constant function over the input space under 

consideration. The predictive model is of the form:  
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𝑌 = ∑(𝑑𝑠𝐼𝑠(𝑋𝑖))
𝑖=1,…,𝑛

𝑛𝑃

𝑠=1

+ 𝜀 = �̅� + 𝜀 (2)  

 

 

Recursive partitioning is well adapted to the problem we consider as it is particularly efficient 

in capturing the effect of thresholds (e.g., a low value for one parameter and a high value for 

another parameter, or when a certain parameter reaches a threshold value). One of the 

limitation of this regression is that it sometimes consider so many potential relations that it 

may over-fit. 

4.1.4 Multivariate Adaptive Regression Splines (MARS) 

 

MARS is a combination of (linear) spline regression, stepwise model fitting and recursive 

partitioning. A regression with a single input starts with a mean-only model and adds basis 

functions in a stepwise manner while adding the overall linear trend first. A second model 

using linear regression via least squares is fit to the data. This model is then added to the basis 

functions in a way that reduces the sum of squared error (SSE) between the observations and 

predictions. A fourth basis function is then added to minimize the SSE again. This process is 

repeated until 𝑀 basis functions have been added. At this point, the MARS procedure will try 

to simplify the model using stepwise deletion of basis functions while keeping the y-intercept 

and linear trend. The 𝑀 − 2 candidate leading to the smallest increase of SSE will be 

selected. This deletion will be applied until regressed to the original linear model. 

Stepwise addition and deletion leads to the creation of two sets of 𝑀 − 2 models. The “best” 

model is chosen using a generalized cross validation score which corresponds to a SSE 

normalized by the number of basis functions considered. With multiple inputs, the basis 

functions will consider main effects and multiple-way interactions. The options used for this 

analysis consider only two-way interactions to avoid the exponential cost of considering more 

interactions. 

MARS usually leads to similar results as linear regression with a greater accuracy, and with 

the inclusion of non-monotonic effects and conjoint influences. However, it performs poorly 

with discrete inputs due to the use of splines. 

 

4.2. Estimating global ranking using results from multiple regressions 

 

 

A consequence of the use of multiple regressions is that the ranking of the inputs amongst 

themselves is not obvious when the different regressions disagree. A qualitative approach has 

been used in the past [7] based on the physics considered in the problem and expert 

knowledge, but such an approach introduced some subjectivity and is hard to document. It 

highlighted the need for a more quantitative approach. 

 

Two effects of the uncertainty in the input on the output of consideration are estimated in the 

present study. 

 The individual or “main” effect represents the influence of the uncertain input 𝑖 by 

itself and is estimated with 𝑅𝑐𝑜𝑛𝑡
2 (𝑖) in the stepwise regression and 𝑆𝑖 when response 

surfaces are considered 
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 The effect of the uncertain input from its interaction with other variables, which is not 

captured by the stepwise regression as it is an additive regression, and estimated with 

(𝑇𝑖 − 𝑆𝑖) by the response surfaces. 

 

The main effect of the uncertainty is usually the most important effect and the most stable 

estimate. As a result, the input variables are ranked according to their main global effect, 

estimated as follow: 

𝑀𝑖 =
𝑅𝑐𝑜𝑛𝑡

2 + ∑ 𝑅𝑗
2. 𝑆𝑖,𝑗

𝑛
𝑗=1

𝑛 + 1
 (3)  

 

Where 𝑅𝑐𝑜𝑛𝑡
2 (𝑖)is the influence of input 𝑖  according to the linear or rank regression,𝑅𝑗

2 the 

coefficient of determination one response surface 𝑗 and  𝑆𝑖,𝑗 the first order sensitivity index for 

input 𝑖 when using response surface 𝑗. The cut-off for main contribution effect is set at 0.02, 

meaning that any main contribution lower than 0.02 is considered to be negligible. 
 

The conjoint influence is estimated as an average between all the response surfaces 

considered 

𝐶𝑖 =
∑ 𝑅𝑗

2. (𝑇𝑖,𝑗 − 𝑆𝑖,𝑗)𝑛
𝑗=1

𝑛
 (4)  

 

Due to the fact that conjoint influence is a more volatile indicator, the cut-off for influential 

variables is set to 0.1 (meaning 10 percent of the regression is explained via conjoint 

influence with this input). Furthermore, a variable is not considered as influent if its only 

influence is conjoint (no main effect) unless supported by the equations and what is known 

about the model. 

4.3. Scatterplots  

The use of scatterplots while qualitative, is yet a powerful technique that complement the 

suite of regression techniques as it allows to visually assess the relations between the inputs 

and outputs considered. It is used as a graphical confirmation that the relation estimated by 

any of the regression techniques is indeed present and not spurious. 

5 EXAMPLE 

In order to illustrate the methodology, we use the code to emulate a generic small diameter nozzle pipe 

with a reasonably large number of uncertain inputs (152) and 2 outputs. The sample size is set to 

1,000. 

5.1. Case set up 

All the potential inputs are listed below (with the spatially varying inputs coloured in green). 

The unit when applicable as well as the codename used in the regression is added to each 

considered uncertain input. 

 Effective Full Power Year (yr) [EFPY] 

 Pipe wall thickness (m) [THICK] 

 PWSCC initial flaw length (m)[INILA##] [INILC##] 

 PWSCC initial flaw depth (m)[INIDA##] [INIDC##] 

 Operating temperature (°C) [TEMP] 

 Hoop WRS pre-mitigation (MPa) [WRSAX_##] 

 Axial WRS pre-mitigation (MPa) [WRSHP_##] 

 Surface-crack dist. Rule modifier [SURFRUL]  
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 TW crack dist. Rule modifier (mm) [THWLRUL] 

 yield strength left-pipe (affects COD) (MPa) [YS_LP] 

 ultimate strength left-pipe (affects COD) (MPa) [UTS_LP] 

 elasticity modulus left-pipe (affects COD) (MPa) [E_LP] 

 yield strength right-pipe (affects COD) (MPa) [YS_RP] 

 ultimate strength right-pipe (affects COD) (MPa) [UTS_RP] 

 elasticity modulus right-pipe (affects COD) (MPa) [E_RP] 

 Proportionality constant A – model parameter for crack initiation  (y-1 MPa-1) 

[A_AC_##] [A_CC_##] 

 Multiplier to the proportionality constant A – model parameter for crack initiation 

[A_MULT] 

 Activation energy for crack growth (kJ/mol) [QG] 

 Comp to Comp variability factor  - model parameter for crack growth [FCOMP] 

 within comp variability factor – model parameter for crack growth [FLAWA_##] 

[FLAWC_##] 

 peak to valley ratio [P2V] 

 characteristic width (mV) [CHARWD]  

 

Each of the two outputs selected for this example represents one type of result that may be 

encountered in the analyses under consideration. The outputs are the following: 

 Probability of circumferential crack initiation over 60 yr. which should be around 

10-3 for 60 years. This is considered as a good test example with an output that occurs 

rarely considering the sample size of 1,000. In the example the number of occurrences 

of such event was 2 out of 1,000 realizations. 

 Number of axial cracks over 60 yr. which remains a discrete function but not limited 

to two values and can vary between 0 and 19.  

5.2. Results of regression analyses 

The analyses have been performed twice. The first time using all the 152 inputs, and a second 

time with only the inputs that could impact this particular output (for instance, the probability 

of 1st circumferential crack or the number of axial crack occurring is not affected by any of 

the crack growth parameters). The purpose is to confirm that the method proposed is stable 

enough and the results are not significantly affected when applied on a large number of 

inputs.  

5.2.1 1st Circumferential crack occurrence over 60 years 

Table 1 shows the results of the regressions on the 1st circumferential crack occurrence. 

Despite the small number of occurrences, the component of the proportionality constant 

associated with the first crack is considered the most important parameter by all three 

regressions as expected from the crack initiation equations. All the other inputs are at noise 

level. The result is surprisingly good (especially for recursive partitioning) considering the 

likelihood of spurious correlation. It is also important to note that this is a case where rank 

regression may perform not as good as linear regression as the amplitude of the sampled value 

for the proportionality constant A is extremely important. 
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Table 1: Regressions analyses results on 1st circ. crack occurrence 

 
Rank Regression 

Recursive 
Partitioning MARS Main 

Contri-
bution 

Conjoint 
Contri-
bution * Final R2 0.06 0.4 1 

Input 
R2 

inc. 
R2 

cont. SRRC Si Ti Si Ti 

A_CC_01 0.01 0.01 0.01 1.00 1.00 0.01 1.00 0.14 0.50 

INIDA_01 0.01 0.01 -0.01 --- --- 0.00 0.77 0.00 0.38 

FLAWA_09 0.02 0.01 0.01 --- --- 0.00 0.52 0.00 0.26 

YS_LP 0.03 0.01 -0.01 --- --- 0.00 0.82 0.00 0.41 

INIDA_02 0.03 0.01 0.01 --- --- 0.00 0.85 0.00 0.43 

WRSAX_20 0.02 0.01 -0.01 --- --- 0.00 0.41 0.00 0.20 

A_AC_16 0.04 0.01 -0.01 --- --- 0.00 0.87 0.00 0.43 

FLAWA_10 0.04 0.00 0.01 --- --- --- --- 0.00 0.00 

FLAWA_14 0.05 0.00 0.01 --- --- --- --- 0.00 0.00 

INILA_10 0.05 0.00 0.00 --- --- --- --- 0.00 0.00 

INIDA_14 0.05 0.00 0.00 --- --- --- --- 0.00 0.00 

INIDC_02 0.05 0.00 0.00 --- --- --- --- 0.00 0.00 

A_AC_01 0.06 0.00 0.00 --- --- --- --- 0.00 0.00 

A_AC_17 0.06 0.00 0.00 --- --- --- --- 0.00 0.00 

WRSAX_12 --- --- --- --- --- 0.00 0.55 0.00 0.27 

WRSAX_21 --- --- --- --- --- 0.00 0.00 0.00 0.00 

WRSAX_17 --- --- --- --- --- 0.00 0.83 0.00 0.42 

WRSAX_10 --- --- --- --- --- 0.00 0.21 0.00 0.10 

* highlighted in yellow if conjoint contribution is larger than 0.1 

 

The set of scatterplots (Figure 1) for the four identified most important inputs shows the issue 

when a really small number of realizations occurs. Some of the 152 inputs may have high 

values (or low values) associated with the 2 realizations leading to circ. crack initiation and 

therefore be considered as important. 
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Figure 1: scatterplots of the four most important uncertain parameters for 1st circ. crack occurrence 

 
 

The reduced analysis considered only 7 inputs parameters (EFPY, THICK, TEMP, A_MULT, 

WRSAX01, A_CC_01, A_CC_02). The results of the regression are displayed in Table 2. 

They are similar to the larger regression analysis, essentially identifying one important 

parameter.  Such results demonstrate that while adding more input tends to make the analysis 

noisier, it does not seem to affect the regressions values significantly to the point of changing 

any conclusion. 

 
Table 2: Regressions analyses results on 1st circ. crack occurrence with reduced number of inputs 

 
Rank Regression 

Recursive 
Partitioning MARS Main 

Contri-
bution 

Conjoint 
Contri-
bution * Final R2 0.02 0.4 1 

Input 
R2 

inc. 
R2 

cont. SRRC Si Ti Si Ti 

A_CC_01 0.01 0.01 0.01 1.00 1.00 0.01 1.00 0.14 0.50 

WRSAX_01 0.01 0.00 0.01 --- --- 0.00 0.00 0.00 0.00 

TEMP 0.02 0.00 0.00 --- --- 0.00 0.00 0.00 0.00 

A_MULT 0.01 0.01 0.01 --- --- 0.00 0.12 0.00 0.06 

EFPY --- --- --- --- --- 0.00 0.01 0.00 0.00 

THICK --- --- --- --- --- 0.00 0.95 0.00 0.47 

A_CC_02 --- --- --- --- --- 0.00 0.00 0.00 0.00 

* highlighted in yellow if conjoint contribution is larger than 0.1 

 



 

Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA 

1.1 Number of axial cracks occurring over 60 years 

On an output with a greater likelihood of occurrences, two of the three regression analyses 

identify the same more important parameter. MARS tends to mostly capture the conjoint 

influence which is consistent with the equation estimating crack initiation. 

 

As expected the components of the A parameter play a significant role both as a multiplier 

and individual values (Table 3). The different location of WRS appear several time. It is not 

unexpected considering that the values at different locations are all correlated in order to 

smooth WRS profiles.  

 
Table 3: Regressions analyses results on number of axial cracks (Rep #1) 

 
Rank Regression 

Recursive 
Partitioning MARS Main 

Contri-
bution 

Conjoint 
Contri-
bution * Final R2 0.71 0.94 0.9 

Input 
R2 

inc. 
R2 

cont. SRRC Si Ti Si Ti 

A_AC_01 0.52 0.52 0.40 0.13 0.23 0.00 0.45 0.22 0.25 

A_MULT 0.66 0.14 0.29 0.37 0.78 0.00 1.00 0.16 0.64 

A_AC_02 0.69 0.03 0.12 0.03 0.24 0.00 0.00 0.02 0.10 

A_AC_03 0.69 0.01 0.06 0.01 0.13 0.02 0.98 0.01 0.49 

WRSHP_13 0.70 0.01 0.04 --- --- 0.00 0.00 0.00 0.00 

WRSHP_08 --- --- --- 0.00 0.01 --- --- 0.00 0.00 

INILC_02 0.70 0.00 -0.04 --- --- --- --- 0.00 0.00 

WRSHP_15 --- --- --- 0.00 0.10 0.00 0.57 0.00 0.30 

WRSHP_23 --- --- --- --- --- 0.00 0.16 0.00 0.07 

INIDA_14 0.71 0.00 -0.04 0.00 0.00 --- --- 0.00 0.00 

A_AC_13 --- --- --- 0.00 0.00 --- --- 0.00 0.00 

TEMP 0.70 0.00 0.04 --- --- 0.00 0.00 0.00 0.00 

WRSHP_10 0.71 0.00 0.03 --- --- 0.00 0.00 0.00 0.00 

WRSHP_02 --- --- --- 0.00 0.01 --- --- 0.00 0.01 

WRSHP_24 --- --- --- --- --- 0.00 0.00 0.00 0.00 

* highlighted in yellow if conjoint contribution is larger than 0.1 

 

Scatterplots are displayed in Figure 2. The influence of the components of the A parameters 

are as expected: 𝐴𝑚𝑢𝑙𝑡 affects all crack initiation so the higher its value is, the more likely it is 

to have multiple cracks. 

 

The first location component of 𝐴01 affects the first crack occurrence but does not 

distinguishes between 1 and multiple cracks (the bottom line is not affected by the values, all 

other lines are). Similarly, 𝐴02 affects the condition for having two cracks (the two bottom 

lines are not affected by its values, all lines above are) and 𝐴03 (the three bottom lines are not 

affected by its values, all lines above are). 
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Figure 2: scatterplots of the four most important uncertain parameters for number of axial cracks 

 
 

 

The reduced analysis is performed using 24 inputs (EFPY, THICK, TEMP, A_MULT, 

WRSHP01, A_AC_01 to A_AC_19) and the corresponding results are displayed below 

(Table 4). The results are consistent with the non-reduced analysis 

 
Table 4: Regressions analyses results on number of axial cracks with reduced number of inputs 

 
Rank Regression 

Recursive 
Partitioning MARS Main 

Contri-
bution 

Conjoint 
Contri-
bution * Final R2 0.71 0.94 0.89 

Input 
R2 

inc. 
R2 

cont. SRRC Si Ti Si Ti 

A_AC_01 0.52 0.52 0.41 0.17 0.27 0.00 0.75 0.23 0.38 

A_MULT 0.66 0.14 0.29 0.36 0.73 0.05 1.00 0.17 0.60 

A_AC_02 0.69 0.03 0.12 0.03 0.21 0.00 0.61 0.02 0.35 

A_AC_03 0.69 0.01 0.06 0.00 0.05 0.00 1.00 0.00 0.47 

A_AC_04 0.70 0.00 0.03 0.01 0.23 0.00 0.00 0.00 0.10 

TEMP 0.70 0.00 0.04 --- --- 0.00 0.72 0.00 0.32 

A_AC_07 0.70 0.00 -0.02 0.00 0.02 0.00 0.61 0.00 0.28 

A_AC_13 --- --- --- 0.00 0.00 --- --- 0.00 0.00 

A_AC_08 --- --- --- --- --- 0.00 0.30 0.00 0.13 

A_AC_19 0.70 0.00 -0.02 --- --- --- --- 0.00 0.00 

A_AC_09 0.71 0.00 -0.02 --- --- 0.00 0.00 0.00 0.00 

WRSHP_01 0.70 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 

THICK 0.70 0.00 -0.02 --- --- 0.00 0.00 0.00 0.00 

* highlighted in yellow if conjoint contribution is larger than 0.1 
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6 CONCLUSION 

These illustrative examples highlight several aspects of the propose approach that can be 

summarized with the following key points: 

 Even with a very small number of occurrences, linear or rank regression and recursive 

partitioning can identify the most important parameters that can be considered for 

importance sampling. 

 MARS works better when the output is continuous or with enough discrete values.  

 The regressions methods reach satisfying level of stability even when the number of 

events of interest is small (less than 10) 

 When many inputs variables are strongly correlated such as in WRS, considering only one 

representative value leads to cleaner analyses. 

 While it is recommended to reduce the number of inputs to those which have really an 

impact to avoid spurious correlation (especially when few events occur), the regressions 

analyses still identify the most important variables when the input set include a reasonably 

large number of non-influential variables (more than 130 in the case of probability of circ. 

crack and number of axial cracks). 

 

In addition a more complete analysis considering replicated Monte Carlo and larger sample 

size has confirmed that the most important inputs have been correctly identified.  

Beyond the application of this approach to a larger number of test problem and real-life 

problem, we plan to test other response surfaces and regressions techniques that may be more 

appropriate depending on the problem and output under consideration. 
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