Major Changes to PSHA and SPRA Practice

Norm Abrahamson University of California, Berkeley Sep 16, 2018

PSHA

$$Rate (SA(T) > z) = \sum_{i=1}^{Nscenario} Rate(M_i, Loc_i, F_i) P(Sa(T) > z | M_i, Loc_i, F_i)$$

- In next 5 years, key improvements will come from the ground-motion model, not the source characterization model
- Move from average GMM for large regions to source/site-specific GMM

Aleatory Variability in Ground-Motion Models

- Most of the variability (standard deviation) in traditional GMM models is from systematic effects, not random variability
 - We now know how far off our egodic GM models are
- Can hazard a large effect on the hazard

Example: 2014 Napa Earthquake

Epistemic Uncertainty for Nonergodic GM models (M7, R10)

Simple hazard application

SPRA

- Use 3-component time histories for initiating events in place of spectral acceleration
- Find a suite of 3-component time histories
 - Appropriate M, R from deaggregation
 - Appropriate inter-frequency correlations (widths of peaks and troughs of the response spectra)
 - Produce the hazard over a wide range of spectral periods and hazard levels relevant to risk

Traditional PSHA

$$Rate (SA(T) > z) = \sum_{i=1}^{Nscenario} Rate(M_i, Loc_i, F_i) P(Sa(T) > z | M_i, Loc_i, F_i)$$

Time-History Based PSHA

$$Rate(SA(T) > z) = \sum_{i=1}^{N_{TH}} Rate(TH_i) H(SA_i - z)$$

Example for Diablo Canyon

400 time histories needed to duplicate hazard

Use in SPRA

- Advantages
 - Complete description of the shaking hazard at the site
 - Fragility of each SSC can be evaluated using the relevant ground-motion parameter (or the full time history)
 - Easy to include other loading such as slope failure using the time histories
- Disadvantages:
 - Requires 100s of initiating events, not 10