

Advancing the Science of Safety

Panel "What's Next for HRA?"

HRA SOCIETY OVERVIEW

A young professional society to promote the sharing of research, methods and data.

Members are regulator, research labs, consultants & utility staff.

Short history:

Initial meeting in Seattle at PSAM'11 conference (2010)
 Follow-up meeting in Honolulu at PSAM'12 (2012)
 HRA Master Class in Paris last year, (2015)

- Largest meeting, ~50 participants from 8 countries
- Surveyed recent activities
- Voted on new leadership

HRA Special Session at PSAM'13 (Seoul, 2016)
PSAM HRA Topical Meeting (Munich, 2017)

HRA SOCIETY VISION

Support Various Aspects of HRA – Research, Modeling, & Applications

- Human Reliability Analysis as part of PRA for Decision-Making
- Human Factors
- Human Error reduction programs

Improve Technical Bases

- HRA methods, models, data & guidance
- HRA for Digital Control systems
- HRA for increased PRA Scope such as External Hazards; Level 2 & 3

Support Expansion & Growth

- Support for emerging countries Regulators & Utilities
- Looking to expand with "regional" chapters such as USA, EU & Asia
- Open to new members

PSAM14 WORKSHOP

COLLECTING HRA DATA

Address the "Elephant in the Room"

• Which has been there for years.

PSAM14 WORKSHOP

COLLECTING HRA DATA

Theme

What are the lessons learned from recent HRA data collection projects that can be used to support future HRA data development?

Building off (an onto) HRA meetings

- PSAM HRA Topical Meeting, June 2017
- IAEA HRA workshop, November 2017
- SACADA workshop, March 2018
- Potential future meetings:
 - PSAM14 workshop, UCLA, September 2018
 - ANS PSA'2019, April 28 May 3rd, 2019
 - Others like ESREL or ASHRAM?

Promoting the idea of improved data sharing

- What is needed to succeed?
- What are the barriers to success?
- Next steps?

Fostering Collaboration Through a Communication Framework (PSAM HRA Topical Slide by Mary Presley, EPRI)

- <u>Need:</u> To *define*, *prioritize* and *track* status of HRA related research needs to:
 - Promote collaboration between research organizations
 - Reduce redundant efforts
 - Communicate advances in state of knowledge
 - Make systematic progress as an international community towards filling knowledge gaps
- Proposal: To create a common format to communicate state of HRA research gaps and ongoing efforts to address those gaps. Agree upon a forum which all organizations can provide their input (face-to-face meeting not necessary?)
- <u>Question</u>: In sharing data, how do we gauge applicability of data given the potential difference in plant operations between countries?

Discussion (PSAM HRA Topical Slide by Mary Presley, EPRI)

- Are the needs captured?
- Data Analytics can we pool data?
- Thoughts on HRA Communication Framework
 - Can we use a structure like an HRA matrix regularly across organizations?
 - Are the categories correct?
 - Can we start filling it out now?
- Other collaboration opportunities?
 - HRA Researcher Wiki?
 - Additional topical conferences with broader audience?

		[Type of human action]
Driving PSFs	State of knowledge	<describe of<br="" state="">knowledge></describe>
	Reducible gaps	<list gaps="" reducible=""></list>
	Ongoing research	
	Irreducible gaps	<list gaps="" irreducible=""></list>
Parameter Estimation	state of knowledge	
	reducible gaps	
	Ongoing research	
	irreducible gaps	
Quantification	state of knowledge	
	reducible gaps	
	Ongoing research	
	irreducible gaps	
Technology Transfer	state of knowledge	
	Ongoing research	

It is an open issue how joint (nuclear industry wide) data collection and analysis could be arranged in a meaningful way.

- Examples and Insight from ICDE
- Organization of data projects requires technical and administrative considerations
 - Example ICDE Operation OECD/NEA
- Technical
 - Format and structure, coding guideline, workshop?
- Administrative
 - Proprietary rights
 - In kind contribution/Exchange
- How to start, Initiation work shop
 - Need agreement on technical framework
 - Need "champions" to push the issue
- Role of HRA Society

HRA WORKSHOP AGENDA

Introductions – 35 participants from 11 countries Workshop Concept / Overview

Selected Presentations

- SACADA Data Program, James Chang
- Characteristics of the HuREX Framework as a Tool for HRA Data, Yochan Kim
- MicroTasks and MicroWorld, Andreas Bye and Ron Boring
- EPRI FLEX and MCR Abandonment, Mary Presley & Kaydee Gunter

Discussion – Breakout Groups

Group 1 - Data Collection

Group 2 - Data Analysis

Group 3 - Application of HRA Data in Decision-Making

Breakout Session Results

Closing

www.jensenhughes.com

HRA WORKSHOP BACKGROUND

Issues considered during pre-meeting discussionStarted with Data Collection

- But "Data" can be different types & different sources:
 - Data from simulators, e.g. Human Error Probability measurement
 - Data from Expert Elicitation
 - Data impacting the Qualitative Analysis
 - Performance shaping factors
 - Timeline
 - Research on the different types of failure
- Data sources: simulator, microtasks, operating experience (incident reports), design basis
- Data, once collected requires Analysis
- Last, Application of the HRA data
 - Applicability for sharing between countries or disciplines
 - Meeting end-user needs

WORKSHOP BREAKOUT (GROUP 1)

<u>Group 1 - Data Collection – How can we improve or</u> <u>facilitate data sharing?</u> (Mary Presley lead)

Suggested questions:

- 1. What kind of framework did you initially start with for the following:
 - Tasks is this the lowest level of data collection?
 - Performance shaping factors positive and negative
 - Objective vs. Subjective evidence what measurements are taken
 - OHow does data collection identify and distinguish the Context?
- 2. What issues did you need to address, beyond those listed above and beyond IP/Privacy/Confidentiality? And how did you solve these?

Halden

- Collecting data for realistic scenarios with their procedures (CE, Westinghouse), but digital I&C (also at plant's simulator). PWR and BWR
 - More challenging than regular training scenarios (outside the basis of PRA?)
 - 3-4 hrs max
 - Working on SBO scenarios (2 crews)
 - Data stored at report, but working on moving them into a database (Katrina has loaded some into SACADA)
- Micro-tasks

• KAERI

- Advanced (fully digitalized) MCR; Only PWRs, full scope simulations
- Data is database and 3 information gathering templates (plant scenario, time analysis, context information/PSFs).
- OPERA database is operational experience data
- Scenarios decided based on discussion with trainers and use PRA to help pick scenario (training data)
- 50min-1hr

• NRC

- SACADA training data (not exam data or e-plan scenarios)
 - 1-2hrs; conventional MCR
- IDHEAS -> cognitive literature
- Expert elicitation for FLEX

CREIPI

- HRA data collection is not yet in Japan
- Human Factors Root Cause database for maintenance failures mostly
- PWR and BWR training center has video recording and stuff, but not HRA data....not sure how they use that data
- INL
 - HERA incident reports...no further work being done in that area
 - Can we use SACADA to collect incident reports
 - Validation studies for digital control upgrades
 - timing data based on operator logs (SBO to support dynamic HRA)
 - Microworlds to answer specific questions
 - Using data to bound human performance (distributions)..."what if"
- NASA
 - Space --- JSC Human and Performance Lab
 - Probability of operators hitting the launch abort button
 - Decision making when bad stuff happens in space
 - Data from shuttle, Apollo and ISS
 - Common matrix for the data
 - To support design decisions for Mars mission
 - Oil & Gas
 - Well incident report (like LARs)

- Exam security and E-plan (security)
- The more challenging scenario that you run the more trained the crew has to be
- Extra workload to training department needs to show big benefit to adopt
 - How do we communicate benefit to the plants so they adopt the data collection?
 - Putting the information into the software helps distill the training findings and common issues the various trainers see and make them visible
 - Linking to utility need (regulator and/or risk drivers)
- HUREX monthly workshop key to keep data collection consistent and learnings passed on.
- Training can be very different from country to country
- How can we share data? Particularly with other industry (e.g., NASA, oil/ gas)
 - 3rd party clearing house

<u>Group 2 - Data Analysis</u> (Katrina Groth lead)

- Suggested questions:
- 1. Did you need to revise an underlying taxonomy that is used to categorize, parse and understand the data?
- 2. How is the data analyzed?
 - ODirect HEP
 - Sectors that impact the HEP
 - Bayesian-belief network
 - ONew causes of error?

Main takeaways (1): Do you need to use an underlying taxonomy to categorize, parse and understand the data (i.e., beyond that in a data source)?

• "YES. This is essential."

- To enable consistent interpretation of the data
- To map across different data collection activities
- To map data across industries
- To enable using multiple data sources (similar data types or different)
- To capture causes and effects beyond a single data source;
- To incorporate qualitative information
- To enable text mining & automated data extraction
- "YES but.."
 - These is a tradeoff between comprehensiveness of the taxonomy and data quantity.
 - We need multiple taxonomies: PSFs, task types, error types, database types "HRA data" is uniquely multifaceted.
 - This requires a serious investment

Main takeaways (2) How is the data analyzed (why did you choose this approach)?

- Multiple types of HRA data & multiple goals for data analysis lends itself to a variety of analytical approaches.
 - Several groups directly quantify HEP and/or PSF->HEP effect using statistical techniques on the data
 - Several groups use BNs (either with or without causal maps)
- Considerations that led to the choices of modeling framework:
 - Need to capture data/information beyond what exists in a single source
 - Need to combine data from different sources & accommodate data together with industry-specific expert judgment;
 - Need to combine both data and scientific process models; enables consistent use of multiple types of data; enables handling differences with simulator
 - Cannot alter aspects of the data (whether that be the simulator environment or the observed accident data); so we can't fully decouple HEP effect from the context.
 - Can't directly assess a "nominal" HEP without considering the context (i.e., a large set of PSFs which need to be mapped onto HEP)
 - Treatment of PSF interdependencies -- potential combinatorial explosion of PSF states dependencies.
 - Potential for controlled PSF->HEP experiments
 - Secondary benefits beyond HRA i.e., influence training

WORKSHOP BREAKOUT (GROUP 3)

Group 3 - Application of HRA Data in Decision-Making (Kaydee Gunter lead)

Suggested questions:

- 1. How do you ensure your data collection and/or analysis supports the end-user needs?
- 2. How does your data provide insights and support to decision-making?

- Data development teams carry out case studies by comparing collected data to existing HRA methods such as CREAM.
 - Verification activity
 - Question applicability of another country's data
- UK not collecting enough data to support end users.
 - Lots of opportunity but need to define the studies.
- From applications side need to review key qualitative factors and compare to insights from the existing data sets.
- Start with feasibility and identify qualitative insights of applications align with data insights.
- Availability of data is a tough issue
 - Use of expert judgement
- Adapted THERP to have plant specific factors.

- Different levels of applications require different scope of data
- To answer this question we need to first list what the applications are.
 - Applications can include
 - HRA model and methods development.
 - Human error mitigations
 - Procedure updates Formatting and content
 - Training
 - Control room design
 - New digital I&C
 - Plant design changes
 - Organizational changes

HRA WORKSHOP CONCLUSION

The workshop concluded with:

- Presentation of Breakout Group results
- Short discussion of the Next Steps
 - Collect and distribute workshop materials to participants
 - Dialogue continues with PSAM14 HRA Data Analysis sessions on Tuesday
 - Recommendation to continue the discussion during PSAM and in PSA'2019 (as a minimum)

FUTURE OF HRA (1 OF 2)

Data Collection

- Trending up
 - Simulator data at the task level (Korea) and the training objective level (USA); both more than 20,000 data points
 - MicroTasks and MicroWorlds to complement simulators
 - End-user, plant data such as FLEX and MCRA
- Did not discuss Operating Experience as a data source
 - EPRI Pre-Initiator
 - ICDE CCF Data is 30-50% HRA
- Not sure Dependency data?

Data Analysis

- Needs a theoretical framework
- Link to Context or de-couple
- Ability to correlate PSF?
- Finding new failure modes

FUTURE OF HRA (2 OF 2)

Application of Data

- Identify gaps, is data being collected to fill?
- Consider:
 - Changes in plant design beyond Digital Controls such as Small Modular Reactors with multiple cores
 - Changes in Hazards (e.g. new information such as consequential or combination hazards like seismic-fire)
 - Changes in models/methods (PRA, HRA, HF)

Next Steps

- Establish a taxonomy and guidelines that relates the different types of data and different levels
- Identify current research and current gaps
- Need champions/sponsors

Bottom line – lots of current activity, the time is now to synchronize activities, but needs continued pressure such as elevating to a project.

www.jensenhughes.com

QUESTIONS?

Contact

Jeffrey Julius +1 206-276-8229 jjulius@jensenhughes.com

For More Information Visit www.jensenhughes.com

Advancing the Science of Safety

23