Probabilistic decision support for offshore wind operations: A Bayesian Network approach to include the dependence of the installation activities

PSAM 14 conference

18 September 2018, UCLA Meyer & Renee Luskin Conference Center

Georgios Leontaris Oswaldo Morales-Nápoles Rogier Wolfert

EUROS Excellence in Uncertainty Reduction of Offshore wind Systems

Outline

- Introduction
- Motivation
- Methodology
- Test case
- Results
- Conclusions

Introduction

JDelft

 Transition towards renewable energy sources is needed FUEL

- Offshore wind energy is considered one of the most promising
- Recently started becoming financially competitive
- High existing costs which grow as we move farther offshore
- Need for improvement of the management of installation process

Probabilistic scheduling model

- Generate realistic synthetic time series (Copulas)
- Obtain distributions of Supply chain disruptions (SEJ)
- Describe dependence of installation durations (NPBN)

Motivation

- Uncertainty regarding activities' duration is often overlooked
- Some cases: use triangular or normal distributions
- Always assumed to be independent
- Investigation of a method to describe the dependence between activities duration
- Explore the impact of neglecting multivariate uncertainty

Approach

- Historical data provided by Van Oord
 - Installation of 150 WTGs in the North Sea
 - 2 different installation vessels
- Diagnosis for Dependence (copulas)
 - Semi-correlations
 - Blanket tests
- Building the NPBN model
- Simulation of test case

NPBN description

- BNs Directed Acyclic Graph
- Nodes represent random variables
- Provide language for conditional (in)dependence
- Copulas realizing (conditional) rank correlations in the arcs

Dependence Diagnosis

- Cramer-von-Mises statistic S_n for copulas with different tail dependence
- Semi-correlations to investigate asymmetries
- Formal P-value test did not distinguish between models as valid

$$S_n = \sum \{C_n(\boldsymbol{u}) - C_{\theta_n}(\boldsymbol{u})\}^2$$

NPBN models for installation activities

- Diagnosis → Gaussian copula valid assumption
- Models for 2 vessels
- 3 sequential installation activities

BBN	Empiric		al Normal	Empirical	Determinants		
Bayesian belief net rank correlation matrix							
			Tower_V	Nacelle_	V1 Rotor_V1		
	Tower_V1		:	1 0,38	86 0,203		
	Nac	celle_V1	0,386	5	1 0,51		
	Ro	tor_V1	0,203	3 0,5	51 1		
More >>			Determinant 0,62964				

Delft

Details of test case

Details	V			alue				
Number of WTGs	150							
Number of vessels	2 (vessel V1 and V2)							
Location	North Sea							
Environmental time series	10 years of measurements for H_s and U_W							
Environmental limits	$H_s = 1.5 \ m \text{ and } U_W = 8 \ m/s$							
Approach 1 (independent deterministic durations)	Tower_V1 = 115 min Tower_V2 = 125 min Nacelle_V1 = 105 min Nacelle_V2 = 125 min Rotor_V1 = 230 min Rotor_V2 = 305 min				min 5 min nin			
	Triangular distribution for V1 with parameters			Triangular distribution for V2 with parameters				
		а	b	С		а	b	С
Approach 2 (independent	Tower	45	115	226	Tower	65	125	310
stochastic durations)	Nacelle	55	105	170	Nacelle	85	125	255
	Rotor	165	230	653	Rotor	245	305	795
Approach 3 (dependent stochastic durations)	Developed BN model for V1			Developed BN model for V2				

Results

- Approach 1 (constant durations) vs
 Approach 3 (NPBNs) difference equal to ≈200 hours (P80)
- NPBN model characterized better uncertainty compared to Approach 2 (Trian. distr.)

Conclusions

- NPBN with serial connection is a realistic representation of the sequential nature of WTGs installation process
- NPBN model characterized better uncertainty compared to Approach 2 (independent stochastic)
- Possible to assist decision makers in planning of the OWFs installation
- An extended model with more installation activities may have potential for significant cost reduction (of millions of Euros as it was shown for this particular application)
- Similar model could be used in execution phase to support decision making for project control

Thank you!

Back up slides

Model validation

- Empirical and BN rank correlations were similar
- Determinants of Empirical, Normal and BN correlation matrices

	Empirical rank correlation			BN rank correlation			
	Twr_V1	Nac_V1	Rot_V1	Twr_V1	Nac_V1	Rtr_V1	
Twr_V1	1	0.403	0.285	1	0.386	0.203	
Nac_V1	0.403	1	0.517	0.386	1	0.51	
Rot_V1	0.285	0.517	1	0.203	0.51	1	

	Model	Model for			
	for V1	V2			
DER	0.60777	0.88103			
DNR	0.62483	0.87358			
DBN	0.62964	0.87514			

Simulation Algorithm

Findings weather risk

- Crucial to produce realistic synthetic time series in order to obtain accurate and reliable estimates when different uncertainties are taken into account
- Stochastic simulation models can help in identifying the impact of different uncertainties

Preliminary results supply risk

CDFs of Duration and Cost for different cases

P80 Duration

ŤUDelft

~5 days (neutral vs excl. risk)
~14,5 days (pessimistic vs excl. risk)

~1,03 ME (neutral vs excl. risk)

~3,06 ME (pessimistic vs excl. risk)