

Mitigation coverage estimation of passive system s using causal reasoning analysis with Multi-level Flow Model

Rensselaer polytechnic institute In Seop Jeon, Junyung Kim, Robby Christian, Hyun Gook Kang

Nuclear Plant Reliability and Information Lab

Multilevel flow modeling

- Multilevel flow modeling (MFM) is a qualitative modeling methodology for representing complex systems at different abstraction level.
 - It represents goals and functions of industrial process involving interactions between functions of material and energy.
- Functional modeling framework has hierarchical modeling capabili ty to handle a complicated engineering system.
 - Since it is difficult to handle all the complexities together at a detaile d level, this abstraction methodology has advantages to simplify com plex systems systematically at different abstraction level.

Syntax of MFM method

	Functions		
at the state of	Mass and Energy Flow		
structure	source	tran sport	storage
	\odot	\Leftrightarrow	\bigcirc
	sink	barrier	balance
	\otimes		
objective O threat ©	Relations		
	Influence	Means-end	
	influncer	maintain	suppress
	participant ───□	destroy	producer
-	I	L	

2

MFM modeling for PWR

- Systems considered in MFM model
 - Reactor coolant system
 - Safety injection system
 - High-pressure injection system
 - Low-pressure injection system
 - Main & Aux feed water system
 - Motor-driven system
 - Turbine-driven system
 - Circulating water system
 - Electricity supply system
 - In-containment refueling storage tank

Causal inference analysis

In the MFM model, the causal relations between the components in the NPP can be expressed in linguistic representation.

Reliabili

All causes (= abnormal states) that induce unsatisfactory goal of MFM (= maintain decay heat removal) are defined by causal inference analysis.
Energy structure of RCS

Influence propagation

Conversion & Elimination process

- Conversion process: from abnormal states to failure events
 - Only abnormal states can be obtained as the results from the MFM analysis.
 - Some abnormal states derived from the MFM are only converted into failure events.
- An elimination process has been additionally proposed to determine the abnormal states that can be applied to the conversion process. (= 3 stages)
- Based on results of failure mode and effect analysis, two types of failure events are considered.
 - Abnormal operation of components
 - Break of components

Cold leg break
MSSV stuck close
ADV stuck open
8

An example of conversion process

Development of accident scenarios

- For redundancy design, the truth tables are applied to MFM to decide whether or not target functions are in abnormal condition due to a failure of some adjacent functions.
 - These tables are developed based on success criteria of systems and TH analysis results.
- Boolean equation is utilized to develop all combinations of failure events that induce decay heat removal failure based on MFM model and truth tables.

Solving Boo	ean equation
-------------	--------------

Objective failure

 $= \overline{mean 1} + \overline{mean 2} * \overline{mean 3}$

failure and Pump 2 failure)

scenario	Combinations of failure
#1	mean 1
# 2	$\overline{\text{mean 2}}$, $\overline{\text{mean 3}}$

6

Development of accident scenarios

- After solving Boolean equation with logic diagram, 478 failure combinations are defined as possible accident scenarios which cause decay heat removal failure.
- Group of all defined accident scenarios
 - Group 1 (High-pressure injection failure + secondary cooling system failure), 415 scenarios
 - Group 2 (High-pressure injection failure + loss of coolant accident (L OCA)), 44 scenarios
 - Unlimited LOCA (e.g. hot-leg break), 39 scenarios
 - Partial LOCA (e.g. steam generator tube rupture), 5 scenarios
 - Group 3 (SBO + turbine driven secondary cooling system failure, 10 scenarios
 - Group 4 (Station black out (SBO) + LOCA), 9 scenarios
 - Unlimited LOCA (e.g. hot-leg break), 8 scenarios
 - Partial LOCA (e.g. u-tube break), 1 scenarios

#	Failure 1	Failure 2	Failure 3	Failure 4	
1	DVI valve stuck open	POSRV stuck o pen	-	-	
2	DVI line break	RCGVS stuck open	-	-	
3	DVI line break	U-tube break	-	-	
476	SIP failure	MDP failure	Main feed water isolation valve stuck close	Turbine break for TDP	
477	SIP failure	MDP failure	Main feed water pump failure	TDP failure	
478	SIP failure	MDP failure	Main feed water pump failure	Turbine break for TDP	

Accident scenarios developed by MFM analysis (Result)

Application of H-SIT system

• The hybrid Safety Injection Tank (H-SIT) was invented to passively inject coolant into a reactor coolant system (RCS) under any pressure condition without depressurization

- In low-pressure accidents, such large-break loss of coolant accident, the H-SIT system injects water using the pressure from nitrogen gas as a conventional accumulators in NPP.
- In high-pressure accidents, it provides inventory make-up by gravitational force after the pressure of the H-SIT equalizes with RCS pressure through equalizing pipe.

Feasibility analysis of the H-SIT

- 1. MFM model is reconstructed considering the application of the H-SIT.
- 2. Accident scenarios that are obtained from previous analysis are inserted into the modified MFM
 - model.
- Alternative ways (= counter-measure) to satisfy the object are identified in consideration of two approaches.
 - Many to many mapping
 - Many to many mapping can be explained that the same end can be realized by many alternative means.
 - Causal inference
 - Additional means not only be used to directly achieve an objective,
 - but also be used to enable other functions, which can affect
- 4. Mitigation covering to the H-SIT.

• Mitigation coverage = Number of scenarios which can be mitigated by the H–SIT All accident scenarios

Example of H-SIT application

- Reliabilit
- Reflection of predefined accident scenario to MFM model
 - Reactor coolant gas venting valve (RCGVV) stuck open + SIP • inlet valve stuck close
- Determination of alternative mitigation ways with the H-SIT by causal reasoning in MFM model
 - High-pressure injection from H-SIT is applied (tra37)
 - RCS depressurization (obj1) keeps success.

>> Low-pressure safety injection (LPSI) pumps can be used to inject water into the vessel (tra31 and tra32 are high).

>> Continuous decay heat removal is possible (tra38 is high).

>> State of goal changes from failure to success.

= RCGVV stuck open + SIP inlet valve stuck close can be mitigated by applying the H-SIT

Application of Boolean equation

• Based on consequence analysis results from MFM analysis, Boolean equation is recalculated to determine the mitigated accident scenarios.

• Mitigation coverage can be estimated based on total number of mitigated scenarios.

Reliabili

Analysis results

- Mitigation coverage estimation of the H-SIT
 - Group 1 (High-pressure injection failure + secondary cooling system failure)
 - 249 scenarios can be mitigated among 415 scenarios, **Mitigation coverage = 60%**
 - Group 2 (High-pressure injection failure + LOCA)
 - (Unlimited LOCA), 24 scenarios can be mitigated among 39 scenarios, Mitigation coverage = 61.5%
 - (Partial LOCA), 3 scenarios can be mitigated among 5 scenarios, Mitigation coverage = 60%
 - Group 3 (SBO + turbine driven secondary cooling system failure), 10 scenarios
 - 10 scenarios can be mitigated among 0 scenarios, Mitigation coverage = 0%
 - Group 4 (SBO + LOCA)
 - (Unlimited LOCA), 8 scenarios can be mitigated among 0 scenarios, Mitigation coverage = 0%
 - (Partial LOCA), 1 scenarios can be mitigated among 1 scenarios, Mitigation coverage = 100%

Mitigation strategies with the H-SIT

Group 1 (High-pressure injection failure + secondary cooling system failure)

Group 2 (High-pressure injection failure + unlimited LOCA)

Development of feed and bleed (F&B) mitigation strategy with H-SIT under low-pressure condition

Development of long-term mitigation strategy with SCP and H-SIT

Group 2 (High-pressure injection failure + partial LOCA), Group 4 (SBO + partial LOCA)

Development of long-term mitigation strategy with secondary cooling system and H-SIT under SGTR

Group 3 (SBO + turbine driven cooling system failure) Group 4 (SBO + unlimited LOCA),

Development of mitigation strategy for coping time extension with H-SIT

END