# Sampling Size Issue in PRA Uncertainty Analysis

Chunrui Deng 2018.9

### Introduction

- Uncertainty is inherent
  - epistemic, aleatory
  - parameter, model, completeness
- Sampling is a natural choice
- In risk-informed application, "mean" value is often a preferred statistics, as it usually corresponds to a high quantile.
- Quantile is another concern

### Introduction

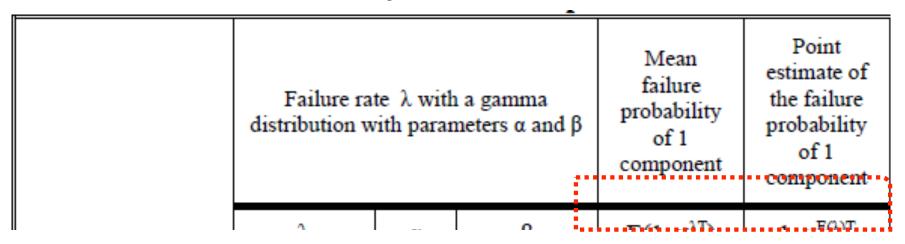
- The issue
  - If a formal uncertainty propagation is necessary
  - Sample size needed for mean value estimate
  - Sample size needed for quantile estimate
- This paper
  - Survey the mathematics behind
  - Give illustrative examples

### Point estimate vs. Mean

- An often oberserved phenomenon
  - The point estimate with mean parameter inputs is approximately the same as the sampling mean, when state-of-knowledge correlation (SOKC) is not taken into account.
- $E[f(\lambda)] = f(E\lambda)$ ?
  - Jensen inequality
    - for a convex function, g(px +(1- p)y) ≤ pg(x) + (1-p)g(y), g(EX) ≤ Eg(X), the equality relationship holds if and only if X is constant or g is a linear function.

### Point estimate vs. Mean

#### Without SOKC


- The probability of a basic event can be approximated to a linear function of input parameters.
- The basic events in a cutset are independent

#### With SOKC

- The basic events in a cutset may be correlated
- $E[X^2] = E[X]^2 + Var(X)$
- A formal uncertainty propagation could be necessary

#### Point estimate vs. Mean

2-redundant components, with or w/o SOKC



- The difference is significant.
- When possible, sampling is recommended.

- Central limiting theorem
  - for i.i.d. random variables with limited

normal 
$$\lim_{x \to \infty} G_n(x) = \int_{-\pi}^{x} \frac{1}{-\pi}$$

Slutsky theorem

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\rightarrow}$$

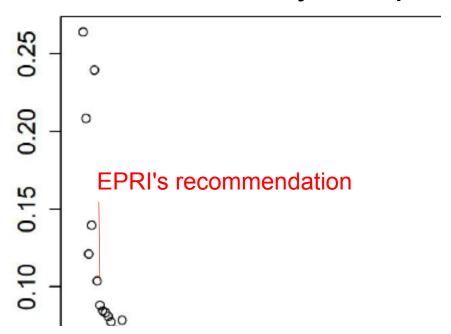
 thus, for large samples, we can use sample variance to substitue population variance.

 We can construct a 1-a confidence interval for mean value

$$\{\mu: \overline{x} - z_{\alpha/2} \stackrel{s}{=} \leq \mu \leq 1\}$$

The length of the interval is

 We can define the relative deviation as a measure of the accuracy of the estimate


$$2z_{\alpha/2} = \frac{s}{c}$$
:

Thus, the size needed is

$$n > \frac{4z^2}{z^2}$$

#### Example:

- Lognormal with mean 1E-5, EF=10
- 90% confidence level, required relative deviation 2%, necessary sample size 170,000



• Example:  $\frac{4z^{2}}{n}$  depends on  $\sigma/\mu$ 

| 11 -                          |                         |
|-------------------------------|-------------------------|
|                               | Mean μ                  |
| Single                        | $E(1-e^{-\lambda t})$   |
|                               | 1.39E-4                 |
|                               | 1.94E-8                 |
| Double redundancy (with SOKC) | $E(1-e^{-\lambda t})^2$ |
|                               | 5.81E-8                 |
| Double redundancy (CCF)       | Note 2                  |
|                               | 9.28E-6                 |
| Triple redundancy             | $E^3(1-e^{-\lambda t})$ |
|                               | 2.70E-12                |

- CCF does not increase the needed sample size
- SOKC increases the sample size moderately
- redundancy increases the sample size greatly (no CCF)

- 2 cutsets
- sample size is determined by σ<sup>2</sup><sub>1</sub>+c
- It can be concluded that the sample size is mainly determined by the dominant cutset.
- For new reactor with high redundancy, the dominant cutsets are usually CCF cutsets, it can be judged the needed sample size is not different than that of the old designs.

# Sample size for quantile estimate

- Asympotical normal distribution is also valid, but the order statistics and approximation theory has to be used.
- A 1-a confidence interval

$$\frac{\mathbf{k_{1n}}}{\mathbf{n}} = \mathbf{p} - \mathbf{z_{\alpha/2}} \sqrt{\mathbf{p}}$$

The interval length

$$C(X) = \frac{2z_{\alpha/2}}{2}$$

is dependent on the desity function.

# Sample size for quantile estimate

 Similarly, define the relative deviation, we can obtain the sample size needed

$$n \ge \frac{4z_{\alpha/2}^2}{2}$$

 It depends on the local property, the sample size may be larger than that for mean estimate.

| Lognormal distribution parameters | Sample size for mean estimate |
|-----------------------------------|-------------------------------|
| mean = 1E - 5, EF = 10            | 170,000                       |

#### Conclusions

- SOKC can significantly impact the mean, a formal uncertainty propagation is recommended when available
- The required sample size for mean value estimate may be tens of thousands, more samples are needed for quantile estimation
- The dominant cutsets also dominate the sample size

#### Issues still in doubt

- For quantile estimation, the probability density function estimate is difficult.
- In risk-informed applications, when significances are used, if we should use their mean values, then how many samples are necessary?

# Thanks for your attention!