An Improved Bayesian Update Tool for Components Failure Rates

Ali Ayoub PhD Student, ETH Zurich Former Intern in PSA Team at Leibstadt NPP

Valerio Ariu PSA Analyst, Leibstadt NPP

17.09.2018 PSAM14

Kernkraftwerk Leibstadt AG CH-5325 Leibstadt | Telefon +41(0)56 267 71 11 | www.kkl.ch

An Improved Bayesian Update Tool for Components Failure Rates

Content

- 1. Introduction and formulation
- 2. Characteristics and issues with the previously implemented Bayesian update algorithm at KKL
- 3. Improved Bayesian update algorithm
 - Non-conjugable distributions
 - Conjugable distributions
 - Discrete distribution
- 4. Results
- 5. Conclusion

Kernkraftwerk Leibstadt AG Folie 2 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Introduction and guidelines KKL, BWR/6, 1275 MW_e, 1984 KKB, PWR, 2x365 MW_e, 1969 KKG, PWR, 1010 MW_e, 1978 KKM, BWR/4, 373-MWe, 1972 30 10 20 40 50 60

Kernkraftwerk Leibstadt

Kernkraftwerk Leibstadt AG

Folie 3 17.09.2018

Introduction and formulation

Kernkraftwerk

Leibstadt

Folie 4 17.09.2

Introduction and formulation

What's the need for a Bayesian update in nuclear PSA?

Swiss regulatory guideline ENSI-A05 states:

"The plant-specific reliability parameters shall be derived for each component group by **combining the collected plant-specific raw data with the generic reliability** data through a **Bayesian** update process."

"The mean failure probability and a statistical representation of the **associated uncertainty** (5th, 50th, 95th percentile) shall be provided for each reliability parameter.

The uncertainty distribution resulting from the Bayesian update shall be directly used or **mapped** by an appropriate distribution (e.g., Beta or Gamma distribution)." (*Re-casting*)

 Kernkraftwerk Leibstadt AG

 Folie
 5
 17.09.2018
 An Improved Bayesian Update Tool for Components Failure Rates

Main features:

$$f(\lambda \mid E) = \frac{f(\lambda) L(E \mid \lambda)}{\int_0^\infty f(\lambda') L(E \mid \lambda') d\lambda'}$$

- Programmed in script language Ruby
- The discretization (to calculate the integral) used was solely based on the prior information
- Integral was always resolved numerically
- Used very large number of integration points
- → Not always efficient
- ightarrow In some cases was unable to correctly capture the mean value and percentiles
- \rightarrow In some cases lead to curtailment of distributions (therefore to optimistic failure rates)

Main drawback

discretization was solely based on prior distribution

Example for curtailment due to discretization based on prior distribution

Prior distribution type: Lognormal Prior distribution Mean: 6.19E-7 [1/h] Prior distribution Error Factor: 3.57

Evidence Number of failures: 8 Evidence Exposure time: 2.52E5 [h] **Obtained Posterior Mean = 7.04E-6 [1/h]** Expected result ~ 8/2.52E5 = 3.17E-5 [1/h]

Kernkraftwerk Leibstadt AG

7 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Prior and Likelihood distributions are "not in-phase

Main drawback

discretization was solely based on prior distribution

Example for curtailment due to discretization based on prior distribution

Prior distribution type: Lognormal Prior distribution Mean: 6.19E-7 [1/h] Prior distribution Error Factor: 3.57

Evidence Number of failures: 8 Evidence Exposure time: 2.52E5 [h] **Obtained Posterior Mean = 7.04E-6 [1/h]** Expected result ~ 8/2.52E5 = 3.17E-5 [1/h]

Kernkraftwerk Leibstadt AG

Folie 8 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Curtailment of distribution: Loss of information of the posterior distribution → Underestimation of the failure rates

Is there an issue with the integration algorithm? Test against MATLAB

Torture test (Mean vs Mean):

Each point represents the Bayesian updated posterior mean as function of the prior mean, for different exposure times and constant number of failures.

MATLAB built-in integration function shows instabilities and divergences

Kernkraftwerk Leibstadt AG

Folie 9 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Improved Bayesian update algorithm

Investigated combinations of prior distributions (available in RiskSpectrum) and likelihood functions commonly used in PSA

	Case	Prior	Likelihood	Update Method	
	1	Lognormal	Binomial	Numerical Integration (modal method)	
	2	Lognormal	Poisson	Numerical Integration (modal method)	
Non-Conjugables	3	Normal	Binomial	Numerical Integration (modal method)	
	4	Normal	Poisson	Numerical Integration (modal method)	
	5	Uniform	Binomial	Analytical Derivation	
	6	Uniform	Poisson	Analytical Derivation	
Conjugables	7	Gamma	na Binomial Transformation + Conju		
	8	Gamma	Poisson	Conjugation	
	9	Beta	Binomial	Conjugation	
	10	Beta	Poisson	Transformation + Conjugation	
Discrete	11	Discrete*	Binomial	Analytical Derivation	
	12	Discrete*	Poisson	Analytical Derivation	

* Adopts the meaning of RiskSpectrum Discrete distribution, i.e. a piecewise constant (uniform) distribution

Kernkraftwerk Leibstadt AG

Folie 10 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Improved Bayesian update algorithm Non-conjugable distributions

The Modal Method

Based on 4 variables: prior mean, prior variance, # failures, exposure time (or number of trials). Discretization after foreseeing the posterior distribution

Solve for the mode of the posterior: 1.

Kernkraftwerk Leibstadt AG Folie

Improved Bayesian update algorithm Non-conjugable distributions

- 2. Construct a pseudo posterior assuming
- the posterior will have the shape of the prior, i.e. same distribution type
- the variance of the posterior is equal to the variance of the prior (conservative)
- 3. Define the «smart» discretization points
- discretization points based on the inverse CDF of the pseudo posterior distribution
- 4. Obtain the real posterior distribution
- using the «smart» discretization points (integration)
- 5. Obtain the posterior distribution properties
- mean, p05, p50, p95 (integration)

Example: A Lognormal distribution can be defined by its Mode (Step 1) its Variance (Asm. 2)

Kernkraftwerk Leibstadt AG

Folie 12 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Improved Bayesian update algorithm Conjugable distributions (analytical solution)

The posterior distribution can be obtained analytically from the prior data distribution and the plant specific data, without the need to perform a numerical integration.

Prior Distribution	Likelihood Distribution	Exact posterior Distribution	Posterior mean	Posterior variance	Posterior percentiles
(λ)	$ $ $(k \mid \lambda)$	$(\lambda \mid k)$	$E[\lambda \mid k]$	$Var[\lambda \mid k]$	p_n
$Gamma(\alpha,\beta)$	$Binomial(n, \lambda)$	$Gamma(\alpha+k,\beta+n)$	$\frac{\alpha+k}{\beta+n}$	$\frac{\alpha+k}{(\beta+n)^2}$	Gamma CDF
$Gamma(\alpha,\beta)$	$Poisson(\lambda T)$	$Gamma(\alpha+k,\beta+T)$	$\frac{\alpha+k}{\beta+T}$	$\frac{\alpha+k}{(\beta+T)^2}$	Gamma CDF Inverse
$Beta(\alpha,\beta)$	$Binomial(n,\lambda)$	$Beta(\alpha+k,\beta+n-k)$	$\frac{\alpha+k}{\alpha+\beta+n}$	$\frac{(\alpha+k)(\beta+n-k)}{(\alpha+\beta+n)^2(\alpha+\beta+n+1)}$	Beta CDF Inverse
$Beta(\alpha,\beta)$	$Poisson(\lambda T)$	$Beta(\alpha+k,\beta+T-k)$	$\frac{\alpha+k}{\alpha+\beta+T}$	$\frac{(\alpha+k)(\beta+T-k)}{(\alpha+\beta+T)^2(\alpha+\beta+T+1)}$	Beta CDF Inverse

 α , β : parameters of Gamma and Beta distribution k: # of observed failures

Kernkraftwerk Leibstadt AG

Folie 13 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Improved Bayesian update algorithm Discrete distribution

The Discrete distribution is defined (in RiskSpectrum) as a piecewise constant distribution

- Used to model fragilites
- Can mimic any distribution
- Bayesian update performed analytically

- \rightarrow Can be used to
- Approximate any distribution

PDF of a discrete distribution

 Benchmark the results of the Bayesian update obtained with the non-conjugables/conjugables methods

Results: Improved Bayesian update algorithm Non-conjugable distributions

Example (same as before)

Prior distribution type: Lognormal Prior distribution Mean: 6.19E-7 [1/h] Prior distribution Error Factor: 3.57

Evidence Number of failures: 8 Evidence Exposure time: 2.52E5 [h] Expected result ~ 8/2.52E5 = 3.17E-5 [1/h]

Old algorithm Posterior Mean: **7.04E-6 [1/h]** New algorithm Posterior Mean: **1.13E-5 [1/h]**

\rightarrow Robust, fast, and efficient Bayesian update algorithm

 Kernkraftwerk Leibstadt AG

 Folie
 15
 17.09.2018
 An Improved Bayesian Update Tool for Components Failure Rates

Results: Improved Bayesian update algorithm Conjugable distributions (analytical solution)

Example

Prior distribution type: Gamma Prior distribution Mean: 3.10E-6 [1/h] Prior distribution $\alpha = 3.1E-6$ Prior distribution $\beta = 1.75$

Evidence Number of failures: 10 Evidence Exposure time: 1.63E6 [h] Expected result ~ 10/1.63E6 = 6.1E-6 [1/h] Probability Density Function

3.10E-06 1.75E+00	5.35E-06 1.18E+01
1.75E+00	1.18E+01
5.65E+05	2.19E+06
4.60E-07	3.07E-06
2.53E-06	5.20E-06
7.67E-06	8.16E-06
	5.65E+05 4.60E-07 2.53E-06 7.67E-06

 \rightarrow Robust, fast, and efficient Bayesian update algorithm

Results: Improved Bayesian update algorithm Discrete distribution

The Discrete distribution is defined (in RiskSpectrum) as a piecewise constant distribution

- Can mimic any distribution (by defining a reasonable number of discretization points)
- Comparison of a discrete distribution Bayesian Update with a Lognormal distribution

Results: Improved Bayesian update algorithm Stability check (against established numerical codes)

Stability check of the implemented algorithm (right) compared to MATLAB (left)

The developed tool shows a **very robust and stable behavior** thanks to the **smart adaptive discretization** algorithm

Kernkraftwerk Leibstadt AG

Folie 18 17.09.2018

Conclusion

12 combinations of prior distributions and likelihood are split into 3 categories. For each category a specific Bayesian update method was developed.

The method is **fast, reliable and robust**, even against well established numerical codes and torture testing

Kernkraftwerk Leibstadt AG Folie 19 17.09.2018 An Improved Bayesian Update Tool for Components Failure Rates

Thank you for your attention!

Ali Ayoub PhD Student, ETH Zurich

Valerio Ariu PSA Analyst, Leibstadt NPP

☑ valerio.ariu@kkl.ch
 ☑ +41 56 268 4076

17.09.2018 PSAM14

Kernkraftwerk Leibstadt AG

Folie 20 17.09.2018

Backup 1 Improved Bayesian update algorithm Non-conjugable distributions Re-casting (mapping)

- The Bayesian update results in a posterior distribution having some irregular shape (distribution-free)
- Fit the posterior distribution into a known parametric distribution so that it becomes easy to handle in RiskSpectrum (requested by the regulator)

e.g Re-casting preserving the mean and median (or p95)

$$\widetilde{\mu}_{posterior} = \ln \left(p_{50, \text{ exact}} \right)$$
$$\widetilde{\sigma}_{posterior} = \sqrt{2 \ln \left(mean_{posterior} \right) - 2\widetilde{\mu}_{posterior}}$$
$$\widetilde{EF}_{posterior} = e^{1.64485 \cdot \widetilde{\sigma}_{posterior}}$$

 Kernkraftwerk Leibstadt AG

 Folie
 21
 17.09.2018
 An Improved Bayesian Update Tool for Components Failure Rates

Backup 3 Improved Bayesian update algorithm Non-conjugables distributions, analytical solution Uniform prior distribution, Poission or Binomial likelihood

Fully analytical Bayesian update

Prior Distribution (λ)	Likelihood Distribution $(k \mid \lambda)$	Exact posterior Distribution $(\lambda \mid k)$	Posterior mean $E[\lambda \mid k]$	Posterior variance $Var[\lambda \mid k]$	Posterior percentiles p_n
Uniform(a, b)	$Binomial(n, \lambda)$	$\frac{\binom{n}{k} \cdot \lambda^k (1-\lambda)^{n-k}}{\frac{1}{n+1} \cdot (I_1(b) - I_1(a))}^*$	$\frac{k+1}{n+2} \cdot \frac{(I_2(b) - I_2(a))}{(I_1(b) - I_1(a))}^*$	$\frac{(k+2)(k+1)}{(n+3)(n+2)} \cdot \frac{(I_3(b) - I_3(a))}{(I_1(b) - I_1(a))} - (E[\lambda \mid k])^{2*}$	$I_1^{-1} (n\% \cdot I_1(b) + (1 - n\%) \cdot I_1(a))^*$
Uniform(a, b)	$Poisson(\lambda T)$	$\frac{\frac{(\lambda T)^k}{k!} \cdot e^{-\lambda T}}{\frac{1}{T} \cdot (\gamma_1(bT) - \gamma_1(aT))}^{**}$	$\frac{(k+1)}{T} \cdot \frac{(\gamma_2(bT) - \gamma_2(aT))}{(\gamma_1(bT) - \gamma_1(aT))}^{**}$	$\frac{(k+2)(k+1)}{T^2} \cdot \frac{(\gamma_3(bT) - \gamma_3(aT))}{(\gamma_1(bT) - \gamma_1(aT))} - (E[\lambda \mid k])^{2**}$	$\frac{\gamma_1^{-1} (n\% \cdot \gamma_1(bT) + (1 - n\%) \cdot \gamma_1(aT))}{T}^{**}$

Tab. 5-2: Summary table of the analytical non-conjugable combinations Bayesian updates

Kernkraftwerk Leibstadt AG Folie 23 17.09.2018

Kernkraftwerk

Leibstadt

Kernkraftwerk Leibstadt AG

Folie 24 17.09.2018