APPLICATION OF FIRE PSA IN DEFINING SYSTEM RELIABILITY CRITERIA: DETECTION AND SUPPRESSION SYSTEMS IN I&C ELECTRICAL PANEL ROOM

University of São Paulo – USP Polytechnic School – EPUSP Naval Architecture and Ocean Engineering Department

Marcos C. Maturana (<u>mcmaturana@yahoo.com</u>) Luciano L. Bruno (<u>lucas.bruno@ctmsp.mar.mil.br</u>) Marcelo R. Martins (<u>mrmartin@usp.br</u>)

Summary

- Motivation and goals
- Plant description
- Fire PSA methodology

• Development of a probabilistic model:

- Relevant Features of the Compartment
- Fire Detection and Suppression Features in the Compartment
- Fire Ignition Sources
- Secondary Combustibles
- Target Sets
- Fire Scenarios
- Fire Growth and Propagation Analysis
- Fire Detection and Suppression Analysis
- Suppression Probability and Scenario Frequency
- Fire systems reliability specification
- Conclusions

Motivation and goals

- LABGENE's licensing process
- Presentation of a case in which PSA are used in the design process, considering a risk acceptance criteria
- Estimate the risk associated to the operation: apply the method for the detailed fire modeling presented by USNRC in NUREG/CR-6850
- Definition of design requirements: establish the reliability characteristics for the fire detection and suppression systems in two I&C electrical panel rooms

Plant description

Table 1: CDF in the PSA Level 1

Operational Mode		Initiating Event	CDF (/yr)	Percentage of Total CDF
		Transients	3.99E-06	1.80%
	Internal	Loss of Coolant Accident (LOCA)	3.30E-06	1.49%
	Events	Anticipated Transient Without SCRAM (ATWS)	3.26E-07	0.15%
		Interfacing Systems Loss of Coolant Accident (ISLOCA)	*	0.00%
Full Dowou		Seismic Events	*	0.00%
run rower		Internal Fire	1.66E-04	74.75%
	External	Internal Flood	3.25E-06	1.46%
	Events	Tornado	*	0.00%
	[External Flood	*	0.00%
		Aircraft Crash	*	0.00%
Low Power and	Internal	Shutdown	4.52E-05	20 35%
Shutdown	Events	Shudown	4.52E-05	20.3370
		Total CDF	2.22E-04	100%

Table 2: Contribution to the CDF of Internal Fires

PAU	CDF (/yr)	Percentage of CDF for internal fires occurring in full power.
Internal Fire	1.66E-4	100%
I&C Electrical Panel Room A	8.00E-5	48.11%
I&C Electrical Panel Rooms B	8.00E-5	48.11%
Area Around Steel Containment	3.80E-6	2.29%

 48MWth two-loop PWR (in design phase)

- Steel containment, surrounded by a water pool used as shielding and ultimate heat sink
- A confinement building houses the steel containment and a secondary system with two turbo-generators

4

Fire PSA Methodology

Step 1: Characterize relevant features of the compartment	Step 2: Identify and characterize fire detection and suppression features	Step 3: Identify and characterize fire ignition sources	Step 4: Identify and characterize secondary combustibles	Step 5: Identify and characterize target sets
Identify the fire compartment and characterize compartment features relevant to fire propagation, target damage and operator actions; define general compartment characteristics of importance.	Identify fire detection and suppression features such as smoke and heat detectors, continuous fire watch, automatic and manual fixed suppression systems and fire brigade capabilities; characterize the operation the fire detection and suppression features in the compartment.	Identify and characterize fire ignition sources to be analyzed in terms of location within the compartment, type, size, initial intensity, growth behavior, severity/likelihood relationship, etc.; estimate frequency of ignition for the ignition source.	Identify and characterize secondary combustibles nearby fixed equipment such as cables that may be damaged by a fire in the selected ignition source.	Identify the target set relevant to each fire ignition source considered in the fire growth and damage analysis. The locations of a target set in relation to the fire ignition source, target types, failure modes, failure criteria, and other relevant information are collected.
Step 6: Define fire	Step 7: Conduct fire growth and spread	Step 8: Conduct fire detection and	Step 9: Calculate non- suppression	Step 10: Calculate scenario
scenarios	analysis	suppression analysis	severity factor	frequency

Relevant Features of the Compartment

- The compartments to be analyzed were defined in the initial PSA – during the Fire PRA Plant Partitioning
- I&C Electrical Panel Rooms A and B are redundant, \bullet with identical functions (control of security systems) and characteristics (with small differences between them)
- These compartments were characterized with respect • to:
 - 0
 - height, width and length type of wall construction and thickness 0
 - ventilation \cap
 - drainage 0
 - obstacles in the ceiling, and
 - fire detection and suppression systems

Fire Detection and Suppression Features in the Compartment

Fixed fire detection and alarm system	Fixed gaseous fire suppression system	Fire brigade
 The detection and alarm system consists of photoelectric smoke detectors, manual triggers, locking switches and audio/visual indicators. Each room has 4 detectors. The alarm and fault information of the field elements will be sent to the central detection and alarm panel. The central panel has an emergency power supply to maintain operation in the event of an external power failure. The time for all control devices to be checked is less than 2 seconds and the activation time of the control modules is a maximum of 3 seconds – so the transmission time does not exceed 5 seconds (t_{sinal}). The obscuration time required for the activation of the HRR (depends on the fire evolution). 	 Fixed suppression system employs the agent FK-5- 1-12 - clean agent listed in NFPA 2001 [13]. One 420-lb FK-5-1-12 cylinder will be installed for each room, plus a 250 lb cylinder for the under- floor area - being sufficient for multiple discharges. The concentration of FK- 5-1-12 used is 4.5% volumetric. Discharge will occur after a programmable delay of up to 30 seconds (t_{delay}). The discharge time required to achieve 95% of the minimum design concentration of the flame extinguishing agent does not exceed 10 seconds [13] (t_{discharge}). 	 Given the success of the detection system in issuing the alarm, operators communicate the event to the brigade for manual fire fighting. The fire brigade has its base at 1560 meters from the plant. Operators keep brigade access clear. The passage through the access areas and the permanence in the plant, in the event of a fire in the I&C rooms, do not cause exposure to radiation or other adverse environmental conditions besides those resulting from the burning of the materials present in the rooms. As the plant is not in operation, for the preliminary evaluation of brigade behavior, the data of the Fire Department of the State of Sao Paulo [14] and USNRC [12][15] will be considered. Thus, the following times for the brigade response are considered: a) the communication time: 60s [14] (t_{communication}); b) preparation time: 90s [14] (t_{reaction}); c) the travel time: 140s [14] (t_{travel}), d) fire brigade effectiveness: function of the time available for combat (depends on the evolution of the fire), can be calculated by [12]: P(success of the brigade) = 1 - e^{-λ*(time to suppress)}] (1) Where the suppression rate considered (λ) is given in [15] for "electrical fires", i.e., 9.80E-02 - since the equipment present in these rooms are basically cables and panels.

Table 4: Summary description of firefighting resources considered

Fire Ignition Sources

- Fixed sources of ignition:
 - Panels, cables and junction boxes
 - Ignition of the panels occurs in its upper part
 - Fires that start relatively small and grow over a period of time

- Transient sources of ignition:
 - A solvent spillage was considered
 - . It was considered a poll formation
 - Positioned next to the panels associated to the highest CCDP in each PAU
 - The frequency of ignition of transients was calculated as 5.93E-05/yr

	Electrical pai	nels	Transient fuels					
Peak HRR	Probability	Cumulative	Peak HRR	Probability	Cumulative			
(kW)	(%)	probability (%)	(kW)	(%)	probability (%)			
34	28.30	28.30	47	25.11	25.11			
87	21.38	49.69	85	24.93	50.03			
211	25.77	75.45	142	25.61	75.64			
702	22.60	98.05	317	22.44	98.08			
979	1.45	99.50	404	1.42	99.50			
1790	0.49	99.99	650	0.49	99.99			
> 1790	0.01	100.00	> 650	0.01	100.00			

Table 5: Peak values of HRR and their respective probabilities

Table 6: Ignition frequency per panel, in year-1

_			-, ,,,	
	Description	Ignition frequency	Panels per room	Ignition frequency per panel
	Self-ignited cable fires (plant wide)	3.87E-05		
Γ	Electrical panels(plant wide)	1.72E-03	20	6 16E 05
	Junction Boxes(plant wide)	3.25E-05	29	0.10E-05
	Ignition frequency per room	1.79E-03		

Secondary Combustibles

Target Sets

- Internal equipment to the electrical panels, cables and junction boxes
- Equipment internal to the panel will only combust when the fire starts inside the panel itself
- The cables inside/outside the panels are fire resistant (maintain combustion only when immersed in the flame).
- The cables outside the panels are protected by a ceramic fiber blanket, preventing contact of the cable with the flame from the burning of the electric panels and transient fuels (for a very high HRR, the propagation for all fuels in the room is considered).

- The PRM used to represent the behavior of the plant in the event of a fire was proposed as part of the initial Fire PSA and was not changed
- The target sets have been identified and characterized by considering the components, cables and equipment which are part of the PRM and which may fail due to the spread of the fire from the ignition sources
- The location of components and cables inside the compartments was considered

Fire Scenarios

- The equipment associated with the initial fire source (in case of panel) is failed, independently of the reaction of the firefighting systems, at the instant of ignition
- The fixed gaseous suppression system, once acting, interrupts the process of fire evolution, being sufficient to reach the effective fire control
- The equipment affected in each scenario was defined as a function of the fire simulations (they were performed to estimate the elapsed time between the ignition and the temperature increase of the target sets, up to 65°C) – since they are affected one by one as the fire progresses.
- Thus, each postulated fire scenario is characterized by the position and type of the ignition source (panel or transient), by the fire intensity (defined by the HRR profile), by the group of affected equipment, and by the interval at which suppression occurs (or does not occur)
- CFD software: the version 5.5.3a of the Fire Dynamics Simulator (FDS) was
 used to model fire growth and propagation

Fire Growth and Propagation Analysis

Figure 2: I&C Electrical Panel Rooms A – P27 ignition (after 1065s)

Figure 1: P27 HRR profile and oxygen concentration in the room

Table 7: P27 ignition – time for target sets damage

= -	Deals				Time	to d	ama	ige (equ	ipn	ient r	eaches	65°C)	[s]				on*
itio	Реак црр	Cabinet	27-32		33	34	4 35-38 3		40	41	42-45	4	6-50	51	52-55	ati	
Igni Sou	IIKK	Panel	27	28	Other panels	33	34	Any panel	39	40	41	Any panel	46	Other panels	51	Any panel	Trune
		34	0	1234	-	-	-		-	•		-	-	-		-	
		87	0	778	-	-	-	-	-	-	1285	-	1019	-	-		-
27		211	0	582	-	-	-	-	-	-	751	-	670	-	-		-
21		702	0	473	-	-	-	-	-	-	549	-	501	-	-	-	860
		979	0	458	-	-	-	-	-	-	534	-	487	-	-	-	810
	1	1790	0	412	-	-	-	-	-	-	458	-	440	-	-	-	690
()*This	column d	iscriminates th	e insta	nt the sim	ulation prese	ented in	stabi	lity. In this	worl	k the da	ita were u	sed only u	ntil this ti	ime.			

Fire Detection and Suppression Analysis

	Figure 5. Event tree for the intellighting systems										
Ignition	Automatic	detection and alarm	Automatic	injection	Fire brigade	Plant response					
				successful	i	suppression					
		successful									
					successful	suppression					
				unsuccessful		suppression					
1					unsuccessful	non-suppression					
1				: I		non suppression					
i		unsuccessful				non-suppression					

Figure 3: Event tree for the firefighting systems

Table 8: Elapsed time for the suppression system performs the discharge

Fuel			Fix	ced			Transient					
Peak HRR [kW]	34	87	211	702	979	1790	47	85	142	317	404	650
t _{detection} [S]	631	463	346	233	209	171	35	13	19	5	4	2
t _{sinal} [S]			1	5			5					
t _{delay} [s]			3	0					3	30		
t _{discharge} [S]			1	0			10					
t _{total} [s]	676	508	391	278	254	216	80	58	64	50	49	47

Table 9: Elapsed time for the fire brigade response

Fuel			Fix	ced		Transient						
Peak HRR [kW]	34	87	211	702	979	1790	47	85	142	317	404	650
t _{alarm} [s]	636	468	351	238	214	176	40	18	24	10	9	7
t _{communication} [s]			6	0			60					
t _{raction} [s]			9	0					9()		
t _{travel} [s]			14	40					14	0		
t _{brigade} [S]	926	758	641	528	504	466	330	308	314	300	299	297

Suppression Probability and Scenario Frequency

	Table 10. CDF for the scenarios with ignition in Fanel F 27												
Ignition Source	Ignition Frequency (see Table 6)	Peak HRR [kW]	eak HRR probability (see Table 5)	Affected equipment	Interval at which	[s] (see Table 7)	Time for automatic combat, in [s] (see Table 8)	ne for the five brigade sponse beginning, in [s] (see Table 9)	Probability of suppression in the interval	equency of damage to affected equipment	CCDP	CDF per scenario	
			d I		begin	end		Tu re		F			
27	6.16E-05	34	2.83E-01	27-32	0	N/A	676	926	1.00E+00	1.74E-05	7.33E-04	1.28E-08	
27	6.16E-05	87	2.14E-01	27-32	0	1019	508	758	9.19E-01	1.21E-05	7.33E-04	8.87E-09	
27	6.16E-05	87	2.14E-01	27-32 e 46-50	1019	1285	508	758	1.09E-02	1.44E-07	1.26E-03	1.81E-10	
27	6.16E-05	87	2.14E-01	27-32, 46-50 e 41	>12	285	508	758	7.01E-02	9.23E-07	1.71E-03	1.58E-09	

Table 10: CDF for the scenarios with ignition in Panel P27

Table 11: Probability of the suppression for panel P27 (Peak HRR: 87 kW)

Interval	Possible mutually exclusive events in the interval	P(suppression in t	he interval)
[0s, 1019s[a) The success of detection (95%) and automatic injection (95%) occur, or; b) The success of detection (95%), failure of injection (5%), and success of the brigade (with time available for combat equal to 1019s minus 758s) occurs; 	95%*95% + 95%*5%* [1-e ^{-0.098*(1019-758)}]	= 9.19E-01
[1019s, 1285s[c) Detection success (95%), injection failure (5%), and success of the brigade occurs between 1019s and 1295s;	95%*5%* {[1-e ^{-0.098*(1285-758)}]- [1-e ^{-0.098*(1019-758)}]}	= 1.09E-02
[1285s,∞[d) Detection failure (5%), or; e) Successful detection (95%), injection failure (5%), and brigade success occurs after 1295s. 	$5\% + 95\%*5\%* \\ \{1-[1-e^{-0.098*(1285-758)}]\}$	= 7.01E-02

FIRE SYSTEMS RELIABILITY SPECIFICATION

Fire Systems Reliability

Conclusions

- Based on the method for the detailed fire modeling presented by USNRC in NUREG/CR-6850, a probabilistic model was developed and fed with data from simulations performed in a CFD model, and the CCDP obtained from the PRM of the Fire PSA for the plant
- It was possible to develop a probabilistic model to assist in the specification of the fire fighting systems for the I&C rooms
- This probabilistic model also can be used to compose the Fire PSA of the plant

Thank you

TECHR