ANALYSES METHODS AND PILOT APPLICATIONS OF SACADA DATABASE

Innovative Engineering & Safety Solutions, LLC Presented by: Mohamad Ali Azarm

> 03/15/2018 Other Contributors: Inn Seock Kim Clifford Marks Faramarz Azarm

BACKGROUND

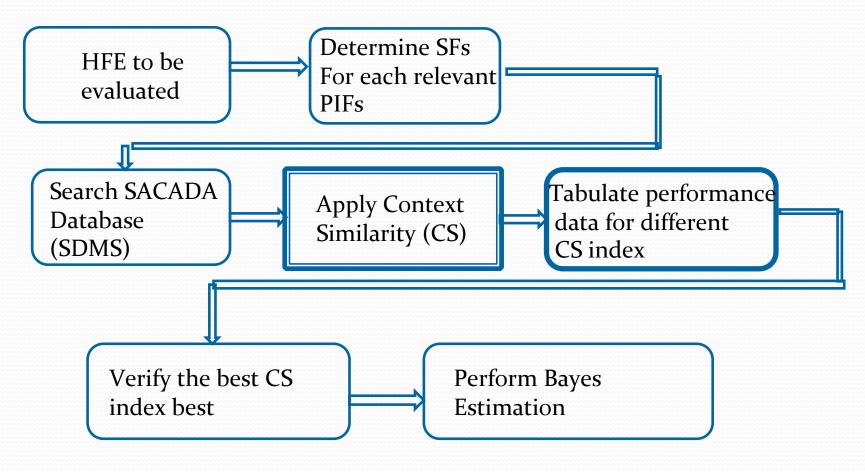
- The U.S. Nuclear Regulatory Commission (NRC) is collecting the licensed operator performance information in simulator exercise of nuclear power plants (NPPs)
- Scenario Authoring, Characterization, and Debriefing Application (SACADA) system collects the routine operator simulator training to collect performance information
- A limited SACADA database was used in this study for developing methods and showing the feasibility of using it for empirical HRA estimation

OBJECTIVES

- To develop methods and demonstrate their feasibility for:
 - Empirical HRA estimation
 - A better understanding of the elements affecting operator performance
 - Demonstrate Feasibility by performing pilot applications

SACADA Contains Categorical Data

- For each procedural steps or Training Objective Element
 - Identifies a set of macro cognitive functions (MCF)
 - Defines situational factors (SFs) for a set of Performance Influencing Factors (PIF) relevant to the MCF
- Each operator action is simulated repeatedly under different conditions (scenarios) such that result in slightly different SFs.
- Operator Performance is recorded in four categories (SAT+, SAT, SATΔ, and <u>UNSAT</u>
- Data Statistics therefore is generated for Human performance resulting from performing an MCF with its associated SFs.


Basic Concept for Categorical Data [Context Similarity]

- Each set of SF defines a categorical data set
- Same sets of categorical data associated with a specific are expected to show similar human performance
- Context similarity is therefore defined by a set of SACADA data for a specific MCF and with the similar (same) set of SFs
- SACADA data that are similar in context can be pooled together for the purpose of HRA estimation by focusing on the UNSAT performance measure

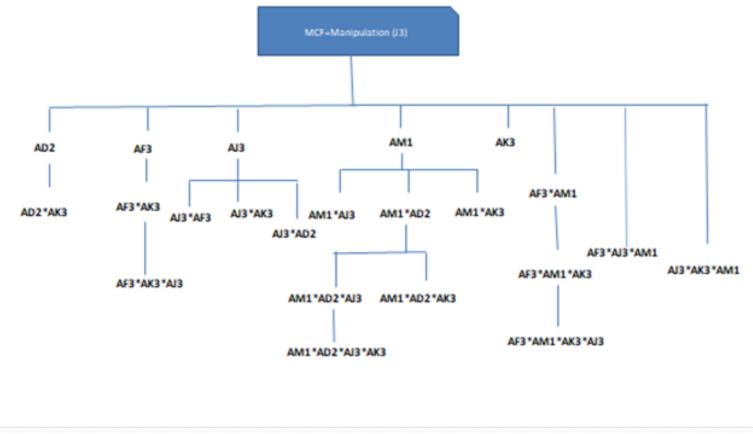
Context Similarity-Process

- 31 PIFs with a total of 134 SFs
- Complete context similarity is achieved when the SFs associated with all 31 PIFs matches [needs very large database]
- When complete context similarity is not achieved, valid partial matches are to be considered
- Partial matches requires an understanding of
 - What are the drivers for human performance for each MCF [Critical SFs]
 - How good is the estimate from the partial matches
- This requires
 - Methods to define critical SFs for each MCF
 - Methods to address the goodness of our estimate

Process flow chart for use of SACADA database for HRA Estimation

Context Similarity -Issues

- How do we determine critical SFs?
- How do we perform HRA estimates based on different combination of critical SFs?
 - How do we define prior for different combinations of critical SFs?
 - What is the concept of MCF tree?
- When is a partial matches considered good enough?
 - What is the best CS index to use.
 - What is meant by "Approximately the same context"
 - What is meant by "Closely estimated HEP values"


Critical SFs/MCF tree/Bayes prior Basic Concept

- Five Macro-Cognitive Function: (1) Monitoring/Detection, (2) Diagnosis, (3) Response Planning, (4) Manipulation, and (5) External communication
- Statistical Significance tests are applied to the SACADA data for each MCF to identify critical SFs [currently limited to five (5)SFs for each MCF]
- MCF plus the critical SF are expected to drive HRA estimates
 - For example: Detection using indicators when there is strong deviation from normal......
- Each MCF with different combination of critical SFs are examined using the statistical significance tests to see if they are different from other combinations
- All combinations that can not be differentiated with each other are presented by the same prior distribution for Bayes updates
- A <u>MCF tree</u> is used for compact presentation of the group combinations and to support Bayes estimation of HEP values

MCF Tree for grouping prior distributions for Bayes updates

- Each MCF with different combination of critical SFs are examined using the statistical significance tests to see if they are different from other combinations
- All combinations that can not be differentiated from each other are presented by the same prior distribution for Bayes updates
- A <u>MCF tree</u> is used for compact presentation of the group combinations and to support Bayes estimation of HEP values

Example of MCF Tree for Manipulation

HEP Estimates and final grouping of the MCF tree for Manipulation

SF States combination	Observation	Prior LN(mean, EF)-Beta (α,β)	Beta Posterior (α,β)	Posterio r 5% Lower Bound	Posteri or 95% Upper Bound	Posterio r Mean	Point Estimate
AD2 AD2*AK3 AD2*AJ3 AD2*AK3*AM1 AD2*AJ3*AM1 AD2*AK3* AM1* AJ3	(84, 4) (15,0)+ (15,0) (15,0) (15,0) (15,0)	LN(0.1, 10)	(5.1,91.7) (1.3, 26.8) (1.3, 26.8) (1.3, 26.8) (1.3, 26.8) (1.3, 26.8) (1.3, 26.8)	2.2E-2 4.5E-3 4.5E-3 4.5E-3 4.5E-3 4.5E-3 4.5E-3	1.0E-1 1.3E-1 1.3E-1 1.3E-1 1.3E-1 1.3E-1 1.3E-1	5.5E-2 4.7E-2 4.7E-2 4.7E-2 4.7E-2 4.7E-2 4.7E-2	4.8E-2 <6.6E-2 [*] <6.6E-2 <6.6E-2 <6.6E-2 <6.6E-2
AF3 AK3 AJ3*AF3 AJ3*AF3 AJ3*AK3 AM1 AM1*AJ3 AM1*AD2 AM1*AK3	(672,16) (451,8) (778,20) (210,7) (320,7) (274,13) (76,5) (15,0) (84,6)	LN(0.1, 10) LN(0.1, 10) LN(0.1, 10) LN(0.1, 10)	(17.3, 667.8) (9.3, 454.8) (21.3, 769.8) (8.3, 214.8) (8.3, 324.8) (14.3, 272.8) (6.3,82.8) (1.3, 26.8) (7.3, 89.8)	1.6E-2 1.0E-2 1.8E-2 1.9E-2 1.3E-2 3.1E-2 3.3E-2 4.5E-3 3.8E-2	3.5E-2 3.2E-2 3.7E-2 6.0E-2 4.0E-2 7.3E-2 1.2E-1 1.3E-1 1.3E-1	2.5E-2 2.0E-2 3.7E-2 3.7E2 2.5E-2 5.0E-2 7.1E-2 4.7E-2 7.5E-2	2.4E-2 1.8E-2 2.6E-2 3.3E-2 2.2E-2 4.7E-2 6.6E-2 <6.6E-2 7.1E-2
AF3*AM1 AF3*AM1*AK3	(96, 13) (48, 6)	LN(0.1, 10)	(14.3,94.8) (7.3, 53.8)	8.3E-2 6.0E-2	1.9E-1 1.9E-1	1.3E-1 1.2E-1	1.4E-1 1.3E-1
AF3*AK3 AF3*AK3*AJ3 AF3*AJ3*AM1 AF3*AJ3*AM1*A K3 Other	(166, 7) (107, 6) (16,5) (16,5) (1970, 14)	LN(0.1, 10) LN(0.1, 10) LN(0.03, 10)	(8.3, 170.8) (7.3, 112.8) (6.3, 22.8) (1.3, 26.8) (15.2, 1995)	2.4E-2 3.0E-2 6.5E-2 6.5E-2 4.8E-3	7.5E-2 1.0E-1 3.6E-1 3.6E-1 1.1E-2	4.6E-2 6.1E-2 2.2E-1 2.2E-1 7.6E-3	4.2E-2 5.6E-2 0.312 0.312 7.1E-3
K ₃	(1970, 14)	LN(0.03, 10)		4.8E-3	-		-

Empirical HEP Point Estimate of FB

Actions	Applicable # of data points, # UNSAT	Number of Matches: # of data points, # of UNSATs							HEP point estimate	Mean HEF estimate
		31	30	29	28	27	26	25	All SFs	Critical SFs
0POP05-EO- E000-1	1018,3	0,0	0,0	14,0	147,1	282,1	323, 1	252,0	2.9E-3	2.5E-3
0POP05-EO- E000-2	1018,3	0,0	0,0	28,1	201,1	461,1	297,0	31,0	2.9E-3	2.5E-3
0POP05-EO- E000-3	23,0	0,0	0,0	0,0	14,0	9,0	0,0	0,0	2.4E-3	2.5E-3
oPOP05-EO- E000-4	23,0	0,0	0,0	0,0	0,0	23,0	0,0	0,0	3.2E-3	3.4E-3
oPOP05-EO- ES01/F003-1	430,0	0,0	0,0	0,0	29,0	129,0	252,2	20,0	1.4E-3	3.0E-3
oPOP05-EO- FRH1-2	196,0	0,0	0,0	41,0	26,0	79,0	36,0	14,0	2.0E-3	3.0E-3
oPOP05-EO- FRH1-4	196,0	0,0	0,0	41,0	26,0	79, 1	36,0	14,0	2.0E-3	3.0E-3
oPOP05-EO- FRH1-1	1970,14	43,2	147,1	586,2	436, 3	492,6	170,0	96,0	7.1E-3	3.0E-3
oPOPo5-EO- FRH1-3	1772,14	38,0	248,4	241,2	516,3	289,2	314,3	99,0	8.0E-3	3.0E-3
0POP05-EO- E000-5	2760,14	0,0	0,0	0,0	355,0	1104,4	892,5	235,5	5.4E-3	3.0E-3
oPOP05-EO- F003-2	2760,14	0,0	0,0	0,0	0,0	14,0	1222,4	976,3	3.2E-3	3.0E-3
HEP for overall Feed and Bleed Action									~3.9E-2	~3.0E-2

actions

Mmazarm@iesscorp.com www.iesscorp.com

CONCLUSION

- Approaches, methods, and tools to support empirical estimation of human error probabilities using SACADA database were developed
- Feasibility and reasonableness of Methods were demonstrated via a comprehensive pilot application
- The results are encouraging and the methods are promising
- Path forward to enhance the methods including their application to a full scope PRA was delineated

Path Forward

- Application and further automation of the methods to be applied to a larger SACADA data base
- Expand SACADA data base by populating more data and improve consistency
- Perform additional pilot application including full integration into an existing full scope PRA

Mmazarm@iesscorp.com www.iesscorp.com

BACKUP SLIDES

Mmazarm@iesscorp.com www.iesscorp.com

Statistical Test of Significance

- Small Data
 - Binomial Bounds assuming base case estimated P value
 - Upper bound from Inv-Bin(95%, P, N)<k
 - Lower bound from Inv-Bin (5%,P,N)>k
- Large data

$$z = \frac{\widehat{p1} - \widehat{p2}}{(\widehat{p}(1 - \widehat{p})\left(\frac{1}{n1} + \frac{1}{n2}\right))^{\circ}0.5}$$
 where n1 and n2 are
of data points and $\widehat{p1}$ and $\widehat{p2}$ are the HEP values and

$$\hat{p} \text{ is defined by}$$

$$\hat{p} = \frac{n1 * \hat{p1} + n2 * \hat{p2}}{n1 + n2} \qquad \qquad Eq - 1$$

Mmazarm@iesscorp.com www.iesscorp.com

HEP Estimation-Prior

Change prior from lognormal to Beta parameters

$$\beta = 1 / \{ML * [(exp (ln (EF/1.645)^2) - 1]\} \\ = \alpha * (1 - ML) / ML$$

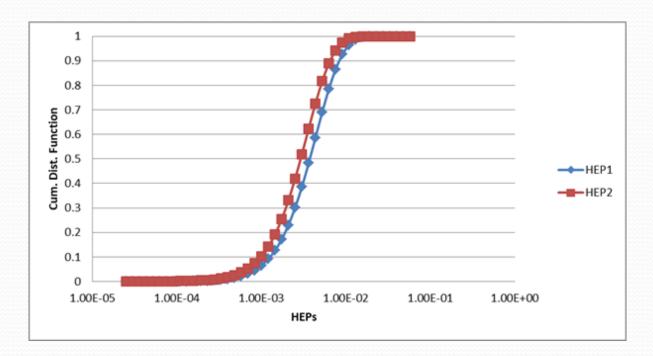
 $\alpha = (1 - ML) / [(\exp(\ln(EF/1.645)^2) - 1]$

HEP Estimation-Posterior using Beta distribution

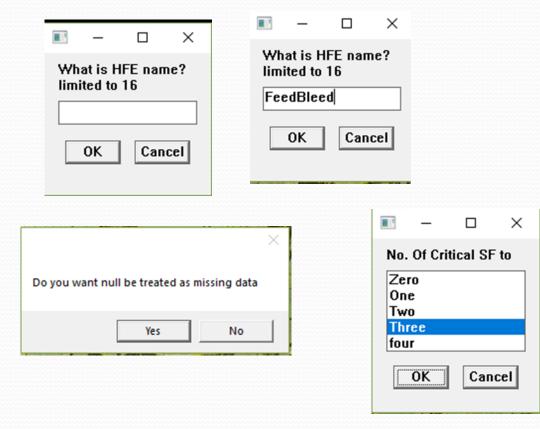
Conjugate Bayes

 $\alpha^* = \alpha + Nf$ and $\beta^* = N - Nf + \beta$ Where Nf is the number of UNSAT and N is the number of datapoints

DRAFT NOT FOR DISTRIBUTION


Approximately the Same Context

- Matching Critical SFs
- Performance of lower level matches (selected)do not significantly deviate from those of higher level matches
 - Statistical Significance test
 - At what significance level?


Closely Estimated HEP Values

- Two HEP distributions
 - One estimated based on performance data from higher level matches (HEP1)
 - The other estimated based on performance data from higher plus the lower level data (HEP₂)
- Large overlap between HEP1 and HEP2
 - A sample taken from ninety percentile interval of HEP1 has 90% probability to be within the 90 percentile interval of HEP2

Example of Closely Estimated HEP values

Example of Interactive Input

Example Output NDATA= NDATA2=

HRA# = 1

Mmazarm@iesscorp.com www.iesscorp.com