Using Microworlds to Support Dynamic Human Reliability Analysis

Thomas A. Ulrich¹, PhD Ronald L. Boring¹, PhD Diego Mandelli¹, PhD

www.inl.gov

¹Idaho National Laboratory

The Challenge – Studying Operators

- NPP control room studies are typically large scale endeavors (Ulrich, Werner, & Boring, 2016)
 - Performed at the plant or in a **full-scope simulator** (HSSL)
 - At INL we focus on control room modernization
 - **Expensive** require SMEs and technical expertise to run simulator
 - Fast-paced due to limited time operators are available
 - Highly applied due to collaboration with utilities
 - Challenging to get sufficient operator sample sizes
 - Complex and confounded environment that limits experimental control
- Microworlds offer an alternative approach to gather human performance data

Microworlds

- Microworlds "...reproduce important characteristics of real situations while leaving open the possibility of manipulation and experimental control" (Funke, 1993)
 - Simplified simulator of a process like nuclear power control
- Current nuclear-related microworlds
 - DURESS II (Vicente et al., 1995; Vicente et al., 1996)
 - Microsimulator (Dyre et al., 2013)

New INL Microworld: Rancor

- Overall Task Transition the plant from shutdown to online electrical power production
 - Several subtasks required to achieve goal
 - Gamified revenue generation
 - Designed to be easy for students to learn and use
 - Model simplified process control (Rankine Cycle) simulation
- Rationale Reduced complexity affords
 - Using less experienced participants
 - Quick administration shorter task durations
 - Experimental control
- Data Sources
 - Parameter logging
 - Event coding (modes operations = tasks)
 - Human actions
 - Integrated with eye tracking for time synchronization

Rancor Microworld Interface

Rancor Microworld – Alarm Region

Rancor Microworld – Graphical System Depiction

Rancor Microworld - Controls

Rancor Microworld - Modes

Prior Research Efforts

- Can students use the microworld?
 - Performance → Yes
- Does domain specific knowledge affects performance? → Yes
 - Students versus Steam Plant Operators
- Are meaningful results generated for cognitive constructs? → Yes
 - Attention
 - Situation Awareness
 - Workload

Active Research Efforts

How do we generalize microworld human performance data to the nuclear industry?

Idaho National Laboratory

•Can student data inform research on operators and control rooms?

•More specific – can we investigate HRA concepts such as the PSF experience/training?

Goals

•Validate the simulation with operators to determine face validity

- **Hypothesis** the microworld is representative
- •Examine how students and operators compare (experience/training)
 - **Hypothesis** Operators will demonstrate better performance
 - Examined a number of variables:
 - Performance (process values)
 - Subjective ratings
 - Attention
 - Situation Awareness

Idaho National Laboratory

Experience/Training Comparison

Participants

- Six licensed operators participating in an operator-in-the-loop study on a new Turbine Control System
- Each operator completed two-year-full-time licensing classes from the same U.S. NPP

Protocol

- 4 trials (2 training, 2 experimental*)
- Each 8 minute trial required the operators to transition the NPP from a shutdown to electrical power production state
- After completing the experimental trials, the operators were debriefed and completed a short questionnaire aimed at gathering their impressions of the simulation

*Prior experiments used 6 experimental, but time constraints for operators allow for only 2

Qualitative Results

- Operators reported the microworld was representative of the process
 - "General theory is good, operationally need procedures and all the other stuff that goes on behind the scenes"
 - "Secondary plant was well designed as far as feed flow, steam gen level and secondary pressure response"
 - "...involves applying a heat source, have to feed flow, and have steam generators – its pretty good and it is like a simulator"
- Noted some differences from the actual process
 - "...the numbers for Thot, so there are some extra things you don't need. Megawatts, efficiency, and reactivity themselves don't help me meet the goal"

Performance Data Results

Operators consistently demonstrated better performance over 2 experimental trials

 In line with extensive prior HRA research on experience/training PSF

Idaho National Laboratory

Preliminary Conclusions

Promising preliminary results

- The operators performed better than students as expected
- The operator reported the microworld was representative
- Still not enough data to make any concrete conclusions
 - Data collection is ongoing
 - Last month two more operators were sampled

Limitations

– Limited number of trials and measures (no eye tracking)

Future Directions

Future Directions

- Gather data to support
 - HEP estimates
 - Performance timing data (see yesterday's talk on GOMS-HRA)
 - Compare analog and digital formats
 - Support Dynamic HRA
 - Detailed data gathering to support subtask modeling and decision making
- Sampling other areas of expertise
 - Oil and gas
 - Adapting system to other models
- Integrate with other ANIME tools → Test analog and digital humanmachine interfaces
 - TEJUN
 - GAIYO

TEJUN-GAIYO Comparing Analog and Digital

- Advanced Nuclear Interface Modelling Environment (ANIME, アニメ)
 - Windows (Visual Studio and WPF) based interface prototyping environment
 - Collection of library and controls
 - Can couple to simulator vendor models (various GSE and WSC simulators) or run in standalone mode (Rancor)
- Next step: Compare operator performance using all digital controls
 - Task Engine for Job and User Notification (TEJUN, 手順)
 - Computer-based procedure authoring system
 - Markdown based procedure input in native 2 column format
 - Graphical Augmentation Interface for Yoked Overviews (GAIYO, 概要)
 - Dynamic Task based overview display
 - Tracks procedure completion to dynamically display current digital indication and controls

TEJUN

React-CBP X	+		- 0
← → ♂ ☆	(i) file:///C:/Users/install/Desktop/react-cbp.20180816/react-cbp/index.htm#	◙ ☆	III\ 🗉
CBP	Instructions × EOP-E-0 ×		
OPs -	number: EOP-E-0		
FOD -	plant: Generic Pressurized Water Reactor		
EOP-E-0	title: REACTOR TRIP OR SAFETY INJECTION		
REACTOR TRIP OR SAFETY INJECTION	Note		
EOP-E-1 LOSS OF REACTOR OR SECONDARY COOLANT	Steps 1 through 5 are immediate action steps. (All high level steps and confirmatory steps are perfo memory. Subsequently, the CRS confirms the immediate actions reading the high level steps only. In phrase "Perform the following" need not be verbalized.)	rmed and broadcast by the OAC and BOP from nformational NOTES, including this one, and the	
EOP-E-2 FAULTED STEAM GENERATOR ISOLATION	Sten 1		
EOP-E-3 STEAM GENERATOR TUBE RUPTURE	Start Time Tue Sep 18 2018 10:36:56 GMT-0600 (Mountain Daylight Time) Time on Step 6 s Completion Time		
	Verify Reactor Trip Perform the fo	llowing:	
	Reactor is not tripped a) Trip reactor	Trip Reactor	
	OR mar required	ually trip reactor using both of the following as d:	
	MCB Sw	ritch #1	
	AND		

GAIYO

Idaho National Laboratory

Conclusions

Rancor microworld holds great utility for gathering operator performance data to inform HRA

 Complements large data gathering efforts like SACADA and HuREX by allowing first principles research

- Allows more precise control of scenarios and interfaces than is possible in full-scope simulator
- Possible to gather large samples of student operators
 - More conclusive statistical findings than small sample operator-in-theloop studies possible at INL
 - Flag areas of interest for subsequent full-scope simulator studies with actual operators

•Results show promise in generalizing results from less experienced operators

•As new microworlds are developed, they provide a much-needed platform to investigate human performance outside nuclear

thomas.ulrich@inl.gov

The National Nuclear Laboratory