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Problem Statement
•  Goal: create a computational model of a Data Generating 

Mechanism (DGM) given N input-output pairs D={x(i), y(i)} 



4 DGM is a deterministic function of 2 inputs without noise 

Problem Statement: On the DGM
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Model form uncertainty vs. deterministic function + colored noise 

Problem Statement: On the DGM
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Problem Statement
•  Parametric models vs. non-parametric models 
•  This paper focuses on the parametric model 

•  This form is implied by the superposition property of linear 
system theory  

•  The calibration problem of interest is not standard since the 
calibrated variable is unobservable 
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Computational Models
•  Interval Predictor Models (IPM) 
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Interval Predictor Models
•  The output is an interval valued function of the input 
•  IPM considered here are given by 

•  This leads to 

     where the IPM boundaries are known analytically 
•  Interval and functional representation 
•  The spread of the IPM is 
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Interval Predictor Models
•  IPMs are calculated by solving the convex program 

Additional set of constraints 
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Interval Predictor Models

np=10 N=1K 
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Interval Predictor Models

np=20 N=1K 
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Interval Predictor Models: Reliability
•  Reliability of the Predictor: scenario theory enables 

bounding the probability of a future observation falling 
outside the IPM: distribution-free, non-asymptotic 

•  This is a probabilistic certificate of correctness 
prescribing the interplay between the amount of 
information available, the complexity of the model, a 
confidence parameter, and the reliability of the model 
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Computational Models
•  Random Predictor Models (RPM) 
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Maximal-entropy Staircase RPM 

The modality and skewness vary strongly with the input 

Random Predictor Models
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Background

•  Hyper-parameters 

•  Desired variables must match these constraints 
•  Only some     are feasible  
•  Polynomial feasibility constraints:  
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Background: 𝛉-Feasibility Equations

Distribution free 
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•  A staircase random variables has a piecewise 
constant density function over a uniform partition of 
the domain that match the constraints imposed by  

•  Staircases are found by solving the convex program 

Staircase Variables
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•  Able to represent a wide range of density shapes 
by using different optimality criteria 
–  Max entropy 
–  Max likelihood 
–  Max degree of unimodality, etc  

•  Able to represent most of the feasible space 
•  Low-computational cost: from convex optimization  

Staircase Variables: Key Attributes
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Random Predictor Models
•  The output is a random process 
•  RPM considered here are given by 

•  Goal: given the data sequence D={x(i), y(i)} we want to 
characterize the distribution of p 
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Random Predictor Models
•  Bayesian/Maximum likelihood approach 

–  Pros: any model, any distribution 
–  Cons: expensive, tight to assumed distribution 
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Random Predictor Models
•  Taking the expected value of the model equation we have 

    which can be combined to obtain the moment functions 

Parameter independency is assumed hereafter 



25 

Moment-Matching RPMs
•  Idea: Find the moments of p leading to a prediction that 

minimizes the offset between the predicted moments and the 
empirical moments 

•  A sliding-window approach is used to estimate the empirical 
moments 

•  The predicted moments, given by 

    depend upon the design variables: 



26 

Moment-Matching RPMs
•  Solution Approach: a sequence of optimization programs for 

moments of increasing order. 
1.  Solve for the mean 

2.  Find a feasible support set using IPMs 
3.  Solve for the variance 

     for 

4.  Find a feasible support set using IPMs…. 
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Moment-Matching RPMs
•  Outcome: 

•  Advantage: approach is distribution-free: no need to assume a 
distribution for p upfront 

•  Setting a particular uncertainty model: use staircase variables 
to realize the optimal moments 
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Moment-Matching Example
•  Goal: to characterize the unknown loading of a cantilever 

beam from displacement measurements 
•  A datum in the sequence is a set of measurements 
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Moment-Matching Example
•  Basis chosen from Euler-beam theory: 
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Moment-Matching Example

Skewed  
response 
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Moment-Matching Example
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Minimal-Dispersion RPM
•  Idea: find the moments of p leading to a prediction that 

concentrates the response as close as possible to the data 
while enclosing it into a high-probability region (trade-off) 

•  Solution approach: solve the optimization program 

     where 

      and the high-probability region is 
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Minimal-Dispersion RPM
•  Same outcome and advantage as the previous approach 
•  When to use: unimodal  DGM 
•  Challenge: characterizing 𝛪𝛂 as a function of 𝛉 𝛂 as a function of 𝛉  as a function of 𝛉 
     In the paper we use: 

     but a better 𝛪𝛂 can be derived using regression/staircases 𝛂 can be derived using regression/staircases  can be derived using regression/staircases 
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Minimal-Dispersion: Example
•  Consider the data-cloud, and an arbitrary basis  
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Minimal-Dispersion: Example
•  Resulting RPM 
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Minimal-Dispersion: Example
•  Distribution of the staircase parameters 
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Conclusions

•  A framework for calibrating affine probabilistic models 
was developed 

•  Technique is moment-based and distribution-free 
•  Computational demands are considerably lower than 

maximum/likelihood based approaches 
•  Eliminates the need for assuming a distribution of the 

uncertainty upfront 
•  Analytical propagation of moments is possible when 

dependency is a known polynomial (we only did linear) 
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Conclusions

•  Parameter dependencies can be accounted for (not 
done here, cumbersome) 

•  All sources of uncertainty and error are lumped into the 
resulting characterization of p...  
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Staircases

•  Consider a random variable z with probability 
density function (PDF)                                  and 
support set             

•  The central moments, defined as 

    are assumed to exist 
•  Goal: to calculate a random variable with a bounded 

support given values for the first four moments 
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𝛉-Feasibility-Feasibility

•  Does there exist a random variable that meets the 
constraints imposed by     ?  

•  Distribution-free vs. distribution fixed 
•  Such a random variable(s) exist if the set of 

polynomial constraints                   is satisfied 

[1] - Sharma 2015, ArXiv 1503.03786; Kumar 2012  
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𝛉-Feasibility: equations-Feasibility: equations
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𝛉-Feasibility-Feasibility

•  Feasible domain 
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𝛉-Feasibility: intersections-Feasibility: intersections
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𝛉-Feasibility-Feasibility

•  Feasible domain 

•  This set is non-convex 
•  Standard random variables cannot realize most of Θ 
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𝛉-Feasibility: intersections-Feasibility: intersections
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𝛉-Feasibility-Feasibility

•  Feasible domain 

•  This set is non-convex 
•  Standard random variables cannot realize most of Θ 
•  There might exist infinitely many random variables 

able to realize a feasible point 
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𝛉-Feasibility-Feasibility

•  Feasible domain 

•  This set is non-convex 
•  Standard random variables cannot realize most of Θ 
•  There might exist infinitely many random variables 

able to realize a feasible point 
•  How to construct a family of random variables that 

can realize most of Θ? 
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Staircase random variables

•  Staircase variables have a piecewise constant PDF 
over a uniform partition of       : nb bins  

•  The PDF of a staircase variable is given by 

    where     is given by 
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Staircase random variables

•  Cost to be defined later 
•  Hyper-parameter: 
•  The above equation can be written as  
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Staircase random variables

•  If the cost function is convex, calculating a staircase 
variable entails solving a convex optimization 
program: efficiently done for hundreds of thousands 
of constraints/design variables 

•  This optimization problem might be infeasible: 
distribution-fixed 
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Staircase variables: cost function

•  Does not affect staircase-feasibility 
•  Three classes considered 

–  Maximal entropy 

–  Minimal squared likelihood 
–  Optimal target matching 

•  Other costs: max/min likelihood, min support, etc. 
•  Let’s explore their structure and dependencies 



53 

Staircase random variables: nb
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Staircase random variables: cost J
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Staircase variables: worst-case variable
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Staircase variables: worst-case PDF
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Staircase variables: feasibility

•  The staircase feasible space is defined as 

•  How much of Θ can staircase variables represent? 
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Staircase variables: feasibility
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Setting Target Functions
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Setting Target Functions
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Setting Target Functions
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Setting Target Functions
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