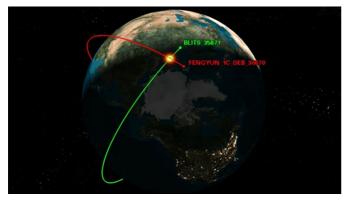
A Bayesian Analysis of the Risk of Satellite Collisions and of Space Surveillance Improvements

ELISABETH PATÉ-CORNELL, PHD, RICHARD KIM, PHD STANFORD UNIVERSITY


PROBABILISTIC SAFETY ASSESSMENT & MANAGEMENT CONFERENCE 2018

September 20, 2018

Stanford Unive

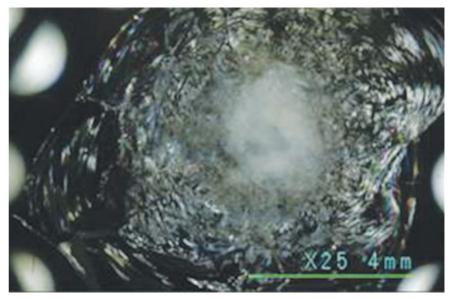
Bottom Line Up Front

- Space is a heavily-utilized environment
- Satellites have a risk of unintended collisions (debris and meteorites)
- Space surveillance systems provide signals of potential collisions
- We use probabilistic risk analysis to quantify the risk reduction benefit of surveillance systems of various configurations
- Tradeoff: add larger but more expensive, or smaller but cheaper sensors

Staniora Unive

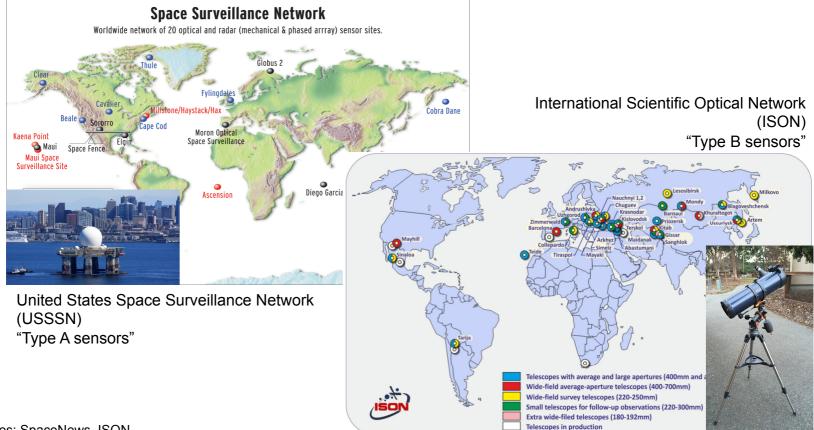
Source: Space.com

Unintentional Space Collisions and Space Surveillance



Space Collision Risks: The Impacts

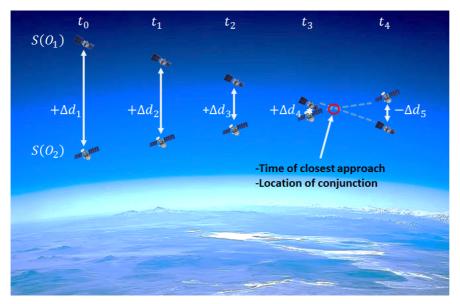
Impact crater from a 12mm plastic projectile, fired onto an aluminum plate at 15,000 mph



Example of window damage to the Space Shuttle Endeavour from debris particle impact

Staniord Unive

Source: NASA


Space Surveillance Networks

Sources: SpaceNews, ISON

Conjunction (Collision) Assessment

- Conjunction assessment by interpolating between measured positions of orbiting objects
- Result: estimated location and time of the collision
 - Opportunity for a tactical decision to maneuver or not

Research Questions

- Question 1: What are quantitative measures of the value of information and, risk mitigation of data loss due to collisions, for space surveillance networks?
 - Incorporates two decisions, tactical and strategic, from different decisionmakers with different risk attitudes
- Question 2: What is an optimal investment strategy for deploying new sensors, large or small, to minimize failure risk from satellite collision and thus data losses?
 - Fundamentally a strategic decision on how to manage space surveillance systems

Stanford Unive

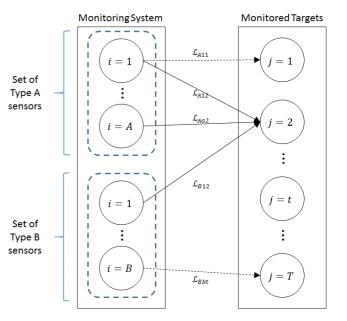
Bayesian Model

Bayesian Model for Evaluating Monitoring Systems

• Probability of a true positive signal from *A*:

 $P("X_{ak}"|X_k) = 1 - P("\bar{X}_{ak}"|X_k) = 1 - P(fn_A)$

• Probability of a true positive signal from *B*:


 $P("X_{bk}"|X_k) = 1 - P("\bar{X}_{bk}"|X_k) = 1 - P(fn_B)$

Observational link function:

 $\mathcal{L}_{Aij} = \begin{cases} 1, & \text{if } \exists \text{ observation link between class } a \text{ and class } t \\ 0, & \text{if } \nexists \text{ observation link between class } a \text{ and class } t \end{cases}$

- $\mathcal{L}_{Bij} = \begin{cases} 1, & \text{if } \exists \text{ observation link between class } b \text{ and class } t \\ 0, & \text{if } \nexists \text{ observation link between class } b \text{ and class } t \end{cases}$
- Numbers of sensors monitoring targets *C*_{*ik*} from *A*:

$$N_{Ai} = \sum_{j=1}^{N_j} L_{Aij}, N_{Bi} = \sum_{j=1}^{N_j} L_{Bij}$$

Staniord Unive

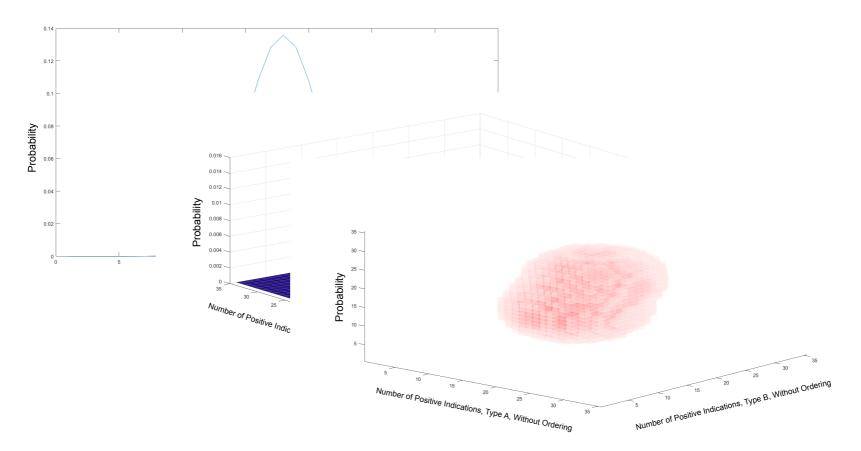
Posteriors for Failure prior probability

General form of the posterior probability per time unit of an unintended collision is

$$P(collision|\{m\}) = \underbrace{P(collision) \times P(\{m\}|collision)}_{P(\{m\})}$$

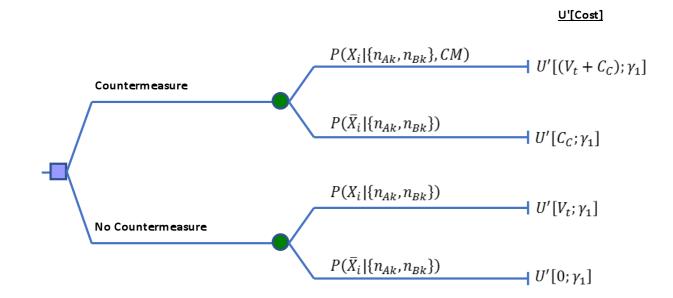
for all sensors in A and B that observe satellite S_{ik}

Posterior probability of losing a constellation and risk of data losses


$$P(X_i|\{m\}) = \binom{N_i}{NF_i} \times P'(X_{ik})^{NF_i} \times \left(1 - P'(X_{ik})\right)^{N_i - NF_i}$$

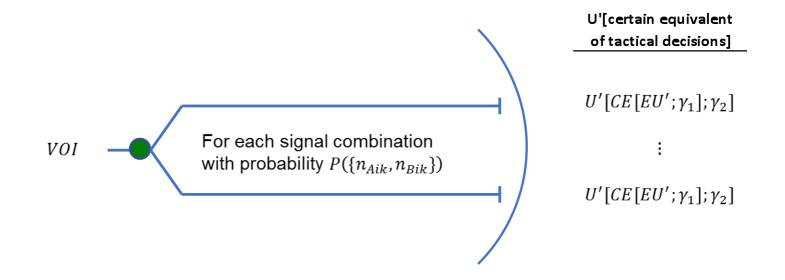
Stanford Unive

likelihood function


preposterior

Preposteriors for Many Sensor Types

Value of Information for Satellite System


 Value of information is a reduction of the certain equivalent of the costs/ losses associated with a move countermeasure

Stantord Unive

Making Strategic Decisions

• Certain equivalent associated with the base monitoring system is

Staniora Unive

Alternatives: Addition of Large (Type A) or Small (Type B) Sensors

 Added benefit of modifying the baseline monitoring system with additional Type A or Type B sensors

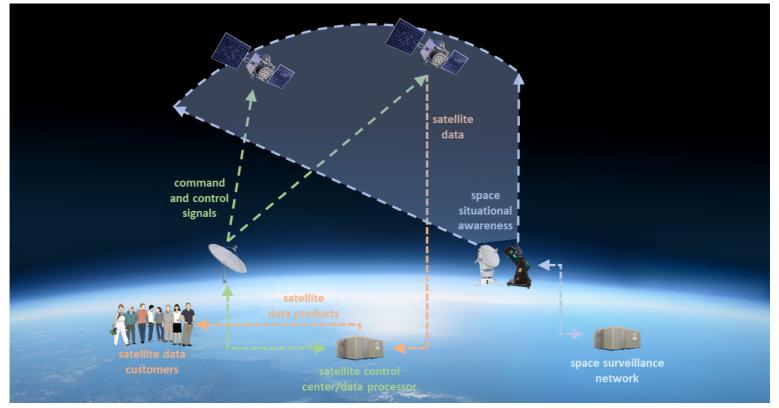
$$Ben[A] = VOI_A - VOI$$

$$Ben[B] = VOI_B - VOI$$

• Strategic decision for optimal policy given by:

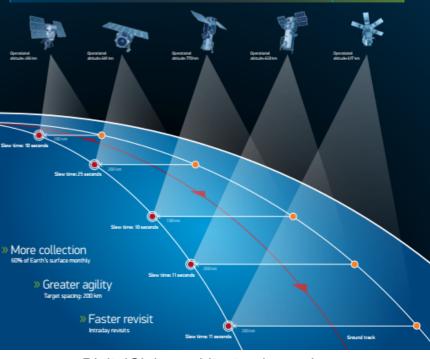
max(Ben[A], Ben[B])

Stanford Unive


14

Bayesian Model, Applied to Space Surveillance Systems

Model Applied to Space Surveillance Systems



Staniord Unive

The DigitalGlobe System

Satellite Name	Mass (kg)	Perigee (km)	Ecc.	Inc. (deg)	Period (min)
GeoEye-1	1,955	671	1.06E-03	98.1	98.3
Worldview 1	4,500	491	2.19E-04	97.3	94.5
Worldview 2	2,800	765	1.40E-04	98.5	100.2
Worldview 3	2,800	612	1.43E-04	98.0	96.9
Worldview 4	2,485	617	2.15E-04	98.0	96.9

Summary of DigitalGlobe constellation

WorldView-2

WorldView-1

GeoEye-1

DigitalGlobe architectural overview

Source: DigitalGlobe

WorldView-4

Worldview-4 further increases our • 2016 30 cm collection capabilities.

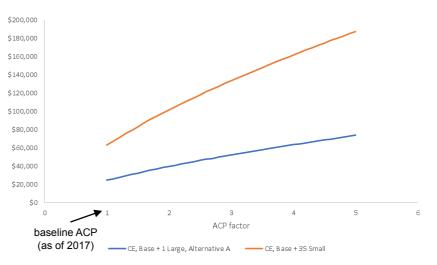
WorldView-3

Stanford Unive

Inputs to Model, Space Surveillance of DigitalGlobe (Illustrative Numbers)

Sensor Class	True Pos	False Neg	False Pos	True Neg
Large SSN sensors observing LEO	0.8	0.2	0.2	0.8
Small SSN sensors observing LEO	0.6	0.4	0.4	0.6
Additional large sensors	0.8	0.2	0.2	0.8
Additional small sensors	0.6	0.4	0.4	0.6

Probabilities of collision detection, by sensor class

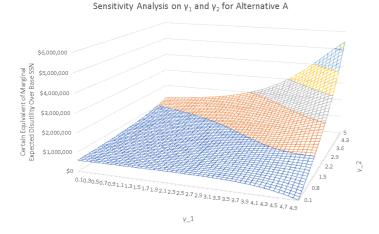

18

Staniora Unive

Illustrative Risk Analysis Results*, Monitoring of DigitalGlobe

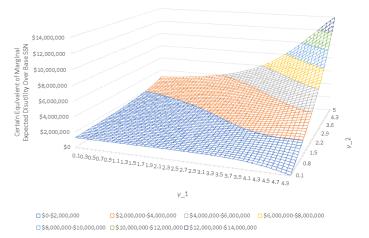
Surveillance Architecture	Base certain equivalent, w/o monitoring	Posterior certain equivalent, with monitoring	Value
SSN + 1 Large Sensor	-\$421,885	-\$399,680	\$22,204
SSN + 35 Small Sensors	-\$421,885	-\$355,271	\$66,613

Summary of risk analysis, base SSN and hypothetical modifications, for DigitalGlobe satellite systems



Risk analysis of base SSN and hypothetical modifications monitoring DigitalGlobe, repeated over a range of annual collision probabilities, from current levels (ACP factor = 1) to a five-fold increase over current levels

Staniora Unive


*assuming risk-neutral decision-makers

Sensitivity Analysis on Risk Attitude

Sensitivity analysis for Alternative A, varying γ_1 and γ_2 simultaneously over a range of 0 to 5

Sensitivity analysis for Alternative B, varying γ_1 and γ_2 simultaneously over a range of 0 to 5

Stanford Unive

Summary

Summary

- Development of a nodal framework for space monitoring systems
 - Rational decision-making for tactical and strategic decisions
 - Better characterization of value and risk of monitoring systems
 - Basis for "apples to apples" comparison of monitoring systems
- Proposal of a value framework that points to sources of value external to the existing monitoring system
 - Avoids self-pointing measures, which can be misleading
- Application of risk analysis model to space surveillance
 - Current analysis of space surveillance systems have almost no quantitative rigor

Staniora Unive

Thank You

Questions?