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Motivation & Objective 

!  Challenge: Existing HRA methods are heavily reliant on 
expert judgment 

!  International HRA data collection projects using control room 
simulator studies offer the opportunity to enhance HRA 
technical basis. 
!  US NRC SACADA, OECD Halden Reactor Project, KAERI’s 

HuREX/OPERA, etc. 

!  Objective: Develop a framework for using the SACADA data 
and Bayesian methods to improve HEP estimation & HRA 
technical basis. 
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Proposed algorithm 
!  PIF hierarchy + HRA data + Cognitive Basis + DBNs  
!  Result: New paradigm for HRA.  

!  Data-driven, science-based, dynamic, transparent, repeatable. 
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Approach (& Presentation outline) 

!  Step 1: Understand the SACADA data & define 
desirable characteristics of data-informed HRA 
models  

!  Step 2: Define elements of the modeling framework 
!  Step 3: Develop detailed algorithm for modeling 
!  Step 4: Map SACADA data onto specific parts of the 

algorithm 
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Description of SACADA Data 

!  SACADA database developed by 
U. S. NRC (Chang et al) 

!  Data collection during operator 
simulator training (multiple 
participating organizations) 
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Summary statistics  
(March 2018) 

# Scenarios 86 
# Malfunctions 329 
# TOEs (aka Steps) 2155 
Avg # crews 
performing a step 
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# Crew-Steps (Total) 26153 

# Unsat 209 (149 
unique 
steps) 

PIFs* ~50 

*Situational Factors & Performance Factors 



Description of SACADA Data: 
Situational Factors 
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Y. J. Chang et al., “The SACADA database for human reliability and human performance,” 
Reliability Engineering & System Safety, vol. 125, no. 0, pp. 117–133, 2014 

Situational Factors 
(Multistate) 

Performance Factors 
(Multistate) 

Detection 7 3 
Diagnosis 6 4 
Decision Making 4 2 
Execution/Manipulation 5 3 
Communication & 
Coordination 2 2 

Overarching 5 7 
Total 29 21 



Approach: Identified requirements for 
models 
!  Using HRA data to improve HRA models requires 

new approaches 
!  Desirable characteristics of advanced HRA models 

1.  Using underlying causal model rooted in strong technical basis 
(combining psychological research, operating experience, simulator data) 

2.  Explicitly representing causal factors that affect performance (& are 
collected in data) 

3.  Support qualitative & quantitative HRA 
4.  Framework should be both data-informed and model-informed. 
5.  Flexibility to accommodate changes as our databases mature 
6.  Ability to fuse information from multiple sources of data & models 
7.  Generate detailed insights to improve human performance (beyond 

quantifying) 
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Elements of the framework 
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for data-
informed  

HRA 

Performance 
influencing 

factor taxonomy 

Human-
machine team 
failure modes 

Bayesian 
Network causal 

models 
Data and Bayesian 
parameter updating 

Human-
machine task 

sequences 
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Person Organization Machine Situation Stressors Team 

Taxonomy of PIFs 
!  Provides application neutral, clearly defined, non-overlapping 

set of factors for modeling use. 
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Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability 
Engineering and System Safety, 108, 154-174. 



Human-machine team failure modes & 
mechanisms 
!  Current approach: Create one BN  (one failure mode (FMs)) for each 

macro-cognitive function (MCF).  
!  Detection   
!  Diagnosis 
!  Decision Making 
!  Execution 
!  Teamwork/Communication  

!  NRC cognitive foundations report (Whaley et al) defined several failure 
modes, failure mechanisms & proximate causes; 
!  Similar concepts used in IDHEAS and PHOENIX 
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Three-pronged approach to modeling 

!  Bayesian Networks causal 
models 
!  To capture causal relationships 

& uncertainty 

!  Bayesian parameter 
updating 
!  To incorporate data into 

probability assignments 

!  IDAC-like DBN model  
!  To capture scenario evolution 

& human-machine task 
sequences 
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Summary: Proposed algorithm 

!  Build BN causal model for each macro-cognitive function.  
!  Use PIF hierarchy from Groth 2012 to provide neutral terminology 
!  Build causal structure for each BN based on published NRC “Cognitive Basis 

for HRA” (Whaley et al 2016) & mapping method in (Zwirglmaier, Straub, 
Groth 2017) 

!  Use node reduction to simplify BBN structure for quantification (Zwirglmaier, 
Straub, Groth 2017) 

!  Quantify priors  
!  Using IDHEAS & expert elicitation as done in Groth, Swiler, Smith.  

!  Update model using SACADA data (repeat for each data source) 
!  Develop mapping of SACADA data onto nodes of BN model 
!  Conduct Bayesian updating on the conditional probability tables using method 

from Groth, Swiler, Smith. 

!  Extend into dynamic space using DBNs + IDAC 
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Full BNs for Detection (3 prox. Causes) 
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Proximate Cause of Failure: Cue/Information not Perceived 

Proximate Cause of Failure: Cue/Information not Attended to 

Proximate Cause of Failure: Cue/Information Misperceived 

•  Create model structure explicitly links PIFs to crew failure 
mechanisms & modes for each macrocognitive failure 



Node reduction & data linking 

!  Follow approach from Zwirglmaier et al (2017)  to formally 
eliminate nodes; 
!  Goal: eliminate mathematically/structurally irrelevant nodes; enabling 

direct link between PIFs and FMs 

!  Then link renaming PIFs to specific data collection elements 
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Example mapping of SACADA 
elements to PIFs & FMs 
!  SACADA can be used for quantifying Pr(failure mode|PIFs) 
!  Unlikely to be used for Pr(PIFs)  
!  …Also for Pr(HFE|HFE) and Pr(PIFs|PIFs) 
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Method for Bayesian updating Pr(HEP|PIFs) 

!  Method developed by Groth & Swiler 2013, 2014 applied to 
SPAR- case study updated w/ Halden data 

!  Method is applicable to the new BNs + SACADA: would use 
IDHEAS or PHOENIX as a prior instead of SPAR-H. 
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Next steps: Can we use SACADA to quantify 
(inter)dependency among HFEs & PIFs? 
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Mosleh & Chang 

SACADA also shows first-of-kind potential for 
quantifying Pr(HFE|HFE) and Pr(PIFs|PIFs) 



Next steps: DBNs for HFE dependency 

!  Dynamic Belief Networks (DBNs) to model dependency between 
sequential activities (human failure events) 
!  First proposed in Groth (2009), Mosleh (2012); Expanded in PHOENIX 

(Ekanem & Mosleh 2013) and HUNTER (Boring et al 2015) 

!  Repeated BNs for each MCF: 

!  With PIF lag/linger & HFE-to-subsequent-HFE dependency 
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Conclusions 

1.  Using HRA data to improve HRA models adds 
credibility, traceability – but requires new approaches. 

2.  HRA data needs to be combined with causal 
understanding of failure (cognitive “physics of failure” 
for human-machine teams) to deal with inherent data 
limitations – requires BNs & data fusion. 

3.  Each data source can quantify a portion of the models - 
SACADA readily enables quantification of Pr(failure 
mode|PIFs) 

4.  New potential of SACADA: enabling first look into 
temporal evolution of human error & PIFs 
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Thank you! 
Katrina Groth 

kgroth@umd.edu 
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Draft Algorithm 

1.  For each MCF: Create a causal map (BN) of the relationship between the failure 
modes, proximate causes of failure, failure mechanisms, and PIFs (Zwirglmaier, 
Straub, Groth 2017) 

2.  Use node reduction to simplify BBN structure for quantification (Zwirglmaier, 
Straub, Groth 2017) 

3.  Identify which arcs & probability tables can be quantified using each type of data 
1.  Pr(PIFs)) and Pr(PIFs|PIFs) 
2.  Pr(Failure modes | PIFs)  
3.  If needed: Pr(failure modes|failure mechanisms) and Pr(Failure mechanisms | PIFs) 

4.  For each data source: map data source variables to BN nodes 
5.  For each additional data source: Bayesian update probability of relevant arcs (See: 

Groth, Swiler, Smith 2014) 
6.  Extend BN to DBN to capture temporal dependencies. 
7.  End. (Now use the BBN for HRA) 
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Matlab Algorithm 

!  Implemented algorithm MATLAB and GeNie that performs 
the following tasks: 
" Read and process SACADA data into data analysis elements: 

!  State Names, States, and State Assignments for SACADA Data 
!  Conditional probability for PIFs with respect to SACADA States 
!  State Assignments and PIF’s of all data under SACADA States 

" Generate BBN conditional probability tables from the state and PIF 
data 

" Elicit prior data into prior distribution for (HEP|PIFs), Pr(PSFs) 
" OR (or Noisy OR) gate for Pr(failure mode|failure mechanisms) and 

Pr(error|failure mode) 
" Perform Bayesian updating and produce the posterior HEP distribution 



Summary of proposed model 
development approach 
!  Use clearly defined taxonomy of PIFs as basis for modeling 

!  Provides application neutral, clearly defined, non-overlapping set of factors for modeling 
use 

!  Build BN causal model for each failure mode (based on macro-cognitive 
functions & human failure mechanisms) 
!  Build causal structure for each BN based on published NRC Cognitive Basis 

for HRA (Whaley et al 2016). 

!  Apply node reduction to simplify model structure to critical 
variables 

!  Quantify prior model(expert elicitation + existing HRA + other data) 
!  Using existing HRA methods and published data sources as done in previous 

work. 

!  Bayesian Update model using SACADA data 
!  Develop mapping of SACADA data onto nodes of BN model 
!  Conduct Bayesian updating on the conditional probability tables using method 

from Groth, Swiler, Smith. 

!  Extend into dynamic space using DBNs + IDAC 24 



Taxonomy of PIFs 
!  Provides application neutral, clearly defined, non-overlapping set of causal factors 

for modeling use. 
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Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability 
Engineering and System Safety, 108, 154-174. 
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Example BN built directly from 
SACADA “Diagnosis” SFs 
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