RST211.02
RST211.02
RsT211.02
RST211.02
RST211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RST211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02
RsT211.02

Scenario

Desc.

Loss Of Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene
Loss O Heat Sink /Post Trip Steam Gene

Year

Malf. Order

Malfunction

1 Loss of all SGFPs.
1 Loss of all SGFPs.

1 Loss of all SGFPs.

1 Loss of all SGFPs.

1 Loss of all SGFPs.

1 Loss of all SGFPs.

1 Loss of all SGFPs.

2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
2 Loss of All AFW Flow Rec
3 Commences FEED and BL

TOE (training objective element)

1 TRIGGER step 1, Loss of Feedwater.

2 Acknowledges annunciators using directed communications t

5 Reports Lockout on E1C
6 Stops SDG 13
7 Takes SG CPORV, to manual.

2 Crew begins monitoring Critical Safety Functions.

3 AtES-0.15tep 3, crew recognizes that A’ and 'C' MDFP are not!
4 (Prior to E5-0.1, step ) Notices and reports NO AFW Flow mak
5 AtES-0.1step &, crew recognizes that G levels have been fall
6 (After E5-0.1, step 8) Notices and reports decreasing G Level
7 Notif f the Rx. Trip within Fa unit trig
8 Dispatches PO to check valve line up on BSG

1 Det Fearcvaive jdoed Besh

Model structure: Built
from existing HRA
method (SPAR-H)

&

z

Con ™S PiErron) = ;f(mmrwsn,,e )+ P(PSFS)y_s 'l' Behavior \
Prior probabilities: Use / Metric ’,'
existing HRA method & SN
expert elicitation

Data: Extract from
simulator data from
nuclear power research

Method: Implement
Bayes’ Theorem to
update probabilities in
model

Likelihood

PD|HX)"

P(D|X)

Nomatizaton |

Pr(EC N PSF1 N PSF2 N PSF3 N BM)

A framework for using SACADA to enhance the
qualitative and quantitative basis of HRA

Katrina M. Groth, Reuel Smith, Ramin Moradi

University of Maryland, Mechanical Engineering Department
Systems Risk and Reliability Analysis Lab
Center for Risk and Reliability

GERSIT
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Motivation & Objective

sSYRrA

= Challenge: Existing HRA methods are heavily reliant on
expert judgment

= International HRA data collection projects using control room
simulator studies offer the opportunity to enhance HRA
technical basis.

= US NRC SACADA, OECD Halden Reactor Project, KAERI’s
HuREX/OPERA, etc.

= Objective: Develop a framework for using the SACADA data
and Bayesian methods to improve HEP estimation & HRA
technical basis.

y @ A.JaMES CLARK 2
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Proposed algorithm

= PIF hierarchy + HRA data + Cognitive Basis + DBNs
= Result: New paradigm for HRA.

= Data-driven, science-based, dynamic, transparent, repeatable.

Model structure: Built
from existing HRA
method (SPAR-H)

nominal

1

Indicators
easy to read and
locate

P(Error) = Z P(Error|PSFsy—g) = P(PSFs);1—g
57,

Clear display
of range for
comparison

Prior probabilities: Use s
existing HRA method & | (F7or) = NHEP [ PSF: - -
expert elicitation Eprave Samime Noreel Bayases insdoaoe

Data: Extract from
simulator data from
nuclear power research

Method: Implement
Bayes’ Theorem to
update probabilities in
model

LILIII

) ) : Copy of
Detection PSFs Diagnosis PSFs Copy c;’fs[;etectnon Diagnosi
7] 7] s sPSFs [

Y v Y

|
|
4
Detection1 . Diagnose1 — Detection2 } DecidePlan2 }———
(7] 7l 7]

Step1
Stepd ot Step3

Manipulation
PSFs

ERSIT,

4,@) A.JamEs CLARK 3
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Approach (& Presentation outline)

= Step 1: Understand the SACADA data & define

desirable characteristics of data-informed HRA
models

= Step 2: Define elements of the modeling framework
= Step 3: Develop detailed algorithm for modeling

= Step 4: Map SACADA data onto specific parts of the
algorithm

N - A.JAMES CLARK 4
2, =L SCHOOL OF ENGINEERING
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Description of SACADA Data )

sSYrRrRA

= SACADA database developed by
U. S. NRC (Chang et al)

= Data collection during operator
simulator training (multiple
participating organizations)

Summary statistics
(March 2018)

# Scenarios 86
# Malfunctions 329
# TOESs (aka Steps) 2155
Avg # crews 12

Malfunction TOE Order TOE (training objective element)

Scenario Year Cycle Malf. Order

RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 1 TRIGGER step 1, Loss of Feedwater.
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 2 Acknowledges annunciators using directed communications t¢
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 3 Directs a manual reactor trip and entry into 0POP05-EO-EO00. p erfo rmin g a Step
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 4 perform diate OPOP05-EO-EQ00 Actions from
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 5 Reports Lockout on E1C
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 6 Stops SDG 13
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 1 Loss of all SGFPs 7 Takes SG C PORV, to manual.
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 1 Transition to 0POP05-EQ-ES01 # C rew- Step S (TOt al) 2 6 1 5 3
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 2 Crew begins monitoring Critical Safety Functions.
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 3 At ES-0.1step 3, crew recognizes that 'A" and 'C' MDFP are not
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 4 (Prior to ES-0.1, step 8) Notices and reports NO AFW Flow mak
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 5 AtES-0.1step 8, crew recognizes that SG levels have been falli
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 6 (After ES-0.1, step 8) Notices and reports decreasing SG Level ! # Uns at 2 O 9 ( l 4 9
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 7 Notifies Owners of the Rx. Trip within 15 minutes of a unit trig
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 8 Dispatches PO to check valve line up on B SG o
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 9 Reports criteria to enter FRH1 is met. unlque
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 10 Determines FRH1 is required.
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 11 ENTERS and Directs FRH1
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec es Bleed and Feed is Required based on requiremen Ste S)
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec es Feed & Bleed is required based on FR-H.1step 9. p
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 2 Loss of All AFW Flow Rec 14
RST211.02 Loss Of Heat Sink /Post Trip Steam Gene 2014 1 3 Commences FEED and BL 1 Determines Recirc valve is open and orders AF-009 to be shut
PIFs* ~50
é\“gksrrk
N

‘@ A.JAMES CLARK *Situational Factors & Performance Factors 5
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Description of SACADA Data: Fon 8
Situational Factors ﬁ

Situational Factors | Performance Factors

(Multistate) (Multistate)
Detection 7 3
Diagnosis 6 4
Decision Making 4 2
Execution/Manipulation 5 3

Communication &
Coordination

OV erar Chin g 5 7 detecting the status change of an indicator.

Total 29 21 tion

vetecting mMoae:

o Procedure directed check: procedure directs crew to check a specific indicator or parameter.

o Procedure directed monitoring.

o Knowledge driven monitoring: knowledge of the situation or expectation of change in the parameter
o Awareness/inspection: non-procedurally directed monitoring or awareness of plant parameters.

[\
(\®)

Degree of change:
o Slight change: i.e,, requires some effort to detect the change.
o Distinct change: i.e., prominent and readily detected if looked at.

Miscellaneous:

1 No mimics: requires operator to rely on memory.

o Small indications: can be read only from a close distance.

o Similar displays: multiple identical displays in the same bank of control panel.

NERSITZ,
> o,

S Y. J. Chang et al., “The SACADA database for human reliability and human performance,”
BN éﬁ%%¥g§ E(l\:I(I}_lI%%]IE%{ING Reliability Engineering & System Safety, vol. 125, no. 0, pp. 117-133, 2014 6
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Approach: Identified requirements for 3%
models o~

= Using HRA data to improve HRA models requires
new approaches

= Desirable characteristics of advanced HRA models

1. Using underlying causal model rooted in strong technical basis
(combining psychological research, operating experience, simulator data)

2. Explicitly representing causal factors that affect performance (& are
collected in data)

Support qualitative & quantitative HRA

Framework should be both data-informed and model-informed.
Flexibility to accommodate changes as our databases mature

Ability to fuse information from multiple sources of data & models

N e W

Generate detailed insights to improve human performance (beyond
quantifying)

& A James CLark /
D &
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Elements of the framework

sSYrRrRA

Performance
influencing
factor taxonomy

Human- Human-
machine task 4 N\ machine team
sequences Framework failure modes
for data-
informed
HRA
/\ j\
_ Bayesian
Data and Bayesian Net Kk 1
parameter updating CIWOrK causa
models

g @ A.JaMES CLARK 8
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Taxonomy of PIFs

* Provides application neutral, clearly defined, non-overlapping
set of factors for modeling use.

2

. SYRRA

Organization Team Person Machine Situation Stressors
A A A A A
/ Organization-based u Team-based u Person-based L] Machine-based “Situmion-basqi u Stressor-based 1
e Training Program e Communication e Attention e HSI External Environment e Perceived Situation:
~ Availability —~ Availability ~ To Task ~ Input Hardware & Software — Severity
~ Quality —~ Quality —~ To Surroundings ~ Output Conditions — Urgency
e Corrective Action Program e Direct Supervision e Physical & Psychological ¢ System Responses Task Load e Perceived Decision:
— Availability — Leadership Abilities — Ambiguity Time Load — Responsibility
~ Quality ~ Team member —~ Alertness Other Loads —~ Impact
e Other Programs e Team Coordination —~ Fatigue —~ Non-task + Personal
— Availability e Team Cohesion —~ Impairment — Passive Information + Plant
~ Quality e Role Awareness —~ Sensory Limits Task Complexity + Society
e Safety Culture — Physical attributes — Cognitive
e Management Activities ~ Other —~ Task Execution
— Staffing e Bias
+ Number

+ Qualifications
+ Team composition
~ Scheduling
+ Prioritization
+ Frequency
e Workplace adequacy
e Resources
—~ Procedures
+ Availability
+ Quality
~ Tools
+ Availability
+ Quality
—~ Necessary Information
+ Availability
+ Quality

ERSIT,

4,@) A.JaAMES CLARK

s SCHOOL OF ENGINEERING

e Morale/Attitude
~ Problem Solving Style
— Information Use
~ Prioritization
+ Conflicting Goals
+ Task Order
~ Compliance
e Knowledge/Experience
Skills
e Familiarity with Situation

Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability
Engineering and System Safety, 108, 154-174.

9



Human-machine team failure modes & 2%
mechanisms SYRRA

=  Current approach: Create one BN (one failure mode (FMs)) for each
macro-cognitive function (MCF).

= Detection
= Diagnosis
= Decision Making
= Execution
= Teamwork/Communication
= NRC cognitive foundations report (Whaley et al) defined several failure
modes, failure mechanisms & proximate causes;
= Similar concepts used in IDHEAS and PHOENIX

(1.2)
Cue/information
not attended to

1.1)
Cue/information
not perceived

(1.3)
Cue/information
misperceived

Failure of Detecting
and Noticing

@ A.JaMES CLARK 10
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Three-pronged approach to modeling

Causal model of human failure

= Bayesian Networks causal =TT 1=
models

= To capture causal relationships i
& uncertainty

@ HFE 1 HFE 2

@.
PN

Groth & Mos! 11\(201 ). from h 4 I
example model. Proceedings of the Institution of Mechanical Engineers, Part O Jounal of Risk and Reliabiliy. 226, 361-
379

Updating HRA w1th 51mu1at0r data

Model structure: Built
from existing HRA

= Bayesian parameter

Prior probabilities: Use
existing HRA method &
expert elicitation

updating

simulator data from
nuclear power research

= To incorporate data into

Bayes’ Theorem to
update probabilities in

model

. . . = D1X) o,
robability assignments -
Groth & Swiler (2013). Bridging the gap between HRA research and HRA practice: A Bayesian Network version of SPAR-H.

Reliability Engineering and System Safety, 115, 33-42.

Groth, Smith, Stevens-Adams, & Swil
probabilities assigne: rlb isting HR:

| IDAC_like DBN model Human Error in IDA Framework

HFE

» To capture scenario evolution e o) oo
(Plant, —%—HD—}—-»DA—I Ex
& human_maChlne taSk # Mismatch between Action and Plant

Operators)

1.Failure of A (Error In Execution)
% 2iailusiofiAdueitoEapginllD

3.Failure in D F—

é\«m Ir;, 4.Failure of D due to failure of I

5. Fail inI 7
/Q éH‘(];AOl}/HgE ]g(I}_/IAN%]IE%?ING 6.12:::;;21 from External Source \}‘\l\.! Recovery 11
”’R Bé
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Summary: Proposed algorithm

Build BN causal model for each macro-cognitive function.
= Use PIF hierarchy from Groth 2012 to provide neutral terminology

= Build causal structure for each BN based on published NRC “Cognitive Basis

for HRA” (Whaley et al 2016) & mapping method in (Zwirglmaier, Straub,
Groth 2017)

= Use node reduction to simplify BBN structure for quantification (Zwirglmaier,
Straub, Groth 2017)

Quantify priors
= Using IDHEAS & expert elicitation as done in Groth, Swiler, Smith.

= Update model using SACADA data (repeat for each data source)
= Develop mapping of SACADA data onto nodes of BN model

= Conduct Bayesian updating on the conditional probability tables using method
from Groth, Swiler, Smith.

= Extend into dynamic space using DBNs + IDAC

g @ A.JaMES CLARK 12
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Full BNs for Detection (3 prox. Causes) @

SYRRA
* Create model structure explicitly links PIFs to crew failure

mechanisms & modes for each macrocognitive failure

Proximate Cause of Failure: Cue/Information not Perceived
Proximate Cause of Failure: Cue/Information not Attended to
Proximate Cause of Failure: Cue/Information Misperceived
Cognitiy N ; Non Task : tl_)asshz
k " Input Output
To task]| Task L Other
Complexity Time Load Loads Task Load * Human *
To Irsﬁy:trg:e
-~ . s =
orale/ ’ Fatigug . . All Loads Availability Quality
i et - :
All Person- ;‘:aining
Based PIFs All Team- ogram
Based PIFs Eﬂ%ﬁm
Knowledge/
Experience
Vigilanc! P:;:z::;:lgiizﬂ
Monitori abilities \
Divided Atf p < .
A4 Cue (;mem 4 b Vigi.la\:ce in 4 Iﬁ ﬁenti?x;;l E’I‘\‘/E:t‘::tz: - . ! 3
" Monitoring — at_tentlo between expecte: orki emo:
_C(t::‘:;l:to D;%r:na:;j Blindness and actualP:ue :; g:géﬁ%%ﬂ:y
N Cue/information . |
IS)es o misperceived
@& A James CLark 13
e SCHOOL OF ENGINEER
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Node reduction & data linking

= Follow approach from Zwirglmaier et al (2017) to formally
eliminate nodes;

= @Goal: eliminate mathematically/structurally irrelevant nodes; enabling
direct link between PIFs and FMs

* Then link renaming PIFs to specific data collection elements

More

) tasks than
Still determin- saat
ing plant status

Environment
nominal rew trained to ifavrmerals
understand the
scenario
Indicators

easy to read and
locate
Prioriti-
zation

Easiness
of data to
read

Clear display
of range for
comparison

Failure of Detecting

fwksm% and Noticin;
& A James CrLark - 14
474RYLP§O
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Example mapping of SACADA »
elements to PIFs & FMs svhan

= SACADA can be used for quantifying Pr(failure mode|PIFs)
= Unlikely to be used for Pr(PIFs)
= ...Also for Pr(HFE|HFE) and Pr(PIFs|PIFs)

(I) Information Pre-processing
(D) Diagnosis and Decision Making
(A) Action Execution

IDA State Variable Type
SACADA State Name SACADA States I D A Indicator PSF (Groth, 2012) Characteristics Using?
‘Cognitive Type' 2:Diagnosis & Response Planning X X Yes
= - 3:Manipulation X X Yes
4:Extemal Communication X X Yes
1:Alarm X I | Yes
2:Status Tile X Yes
3:Meter X Yes
Monitoring/Detection’ Detection Type' 4:Indication Light X Yes
5Flag X Yes
6:Computer X Yes
7:Other X Yes
1:Self-Revealing X Yes
- Procedure Directed Check X Resources Procedures Availability (_?ood Yes
Detection Mode' Resources Procedures Quality Good
3:Procedure Directed Monitonng X Resources Procedures Availability Good Yes
= Resources Procedures Quality Good
4:Awareness/Inspection X Attention to Surroundings Good Yes
'Alarms/Status Tile' 1:Dark X Other Loads Passive information Nommal Yes
‘Status of Alarm Board 2Busy X Other Loads Passive un:onnanon Nommnal Yes
. " Other Loads Passive information Bad .
3:Overloaded X _ i Yes
Task Complexity Bad
‘Expectation of Alarm/Indication 1£§pected ‘E \'es
Change’ _:.\_ot Expegted ‘<: : \_es
= 3:Not Applicable X NA No

RSI
)

@ A.JaMES CLARK 15
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Method for Bayesian updating Pr(HEP|PIFs)

Wk S
SYrRrA

* Method developed by Groth & Swiler 2013, 2014 applied to
SPAR- case study updated w/ Halden data

= Method 1s applicable to the new BNs + SACADA: would use
IDHEAS or PHOENIX as a prior instead of SPAR-H.

Model structure: Built
from existing HRA
method (SPAR-H)

Prior probabilities: Use
existing HRA method &
expert elicitation

Data: Extract from
simulator data from
nuclear power research

Method: Implement
Bayes’ Theorem to
update probabilities in
model

g @ A.JaMES CLARK 16

S SCHOOL OF ENGINEERING



Next steps: Can we use SACADA to quantity 5%
(inter)dependency among HFEs & PIFs? ;’:?m

SACADA also shows first-of-kind potential for
quantifying Pr(HFE|HFE) and Pr(PIFs|PIFs)

Human Error in IDA Framework

e Malf. Order Malfunction TOE Order TOE (training objective element)

Mosleh & Chang HFE |

1 1 Loss of all SGFPs 1 TRIGGER step 1, Loss of Feedwater.
1 1 Loss of all SGFPs 2 Acknowledges annunciators using directed communications tc
'/ '/ F 1 1 Loss of all SGFPs 3 Directs a manual reactor trip and entry into 0POP05-EQ-EO00.
Extern al {} {} 1 1 Loss of all SGFPs 4 perform iate 0POP0S-EO-EQ00 diate Actions from
0 Q Q 1 1 Loss of all SGFPs 5 Reports Lockout on E1C
Input A, r r r 1 1 Loss of all SGFPs 6 Stops SDG 13
(Pla nt ‘ Plant Need 1 1 Loss of all SGFPs 7 Takes SG C PORY, to manual.
’ 1 2 Loss of All AFW Flow Rec 1 Transition to 0POP05-EO-ESO1
opera tors ) 1 2 Loss of All AFW Flow Rec 2 Crew begins monitoring Critical Safety Functions.
1 2 Loss of All AFW Flow Rec 3 AtES-0.1step 3, crew recognizes that 'A’ and 'C' MDFP are not
1 2 Loss of All AFW Flow Rec 4 (Prior to ES-0.1, step 8) Notices and reports NO AFW Flow mak
1 2 Loss of All AFW Flow Rec 5 At ES-0.1 step 8, crew recognizes that SG levels have been falli
1 2 Loss of All AFW Flow Rec 6 (After ES-0.1, step 8) Notices and reports decreasing SG Level
# Mismatch between Action and Pla nt 1 2 Loss of All AFW Flow Rec 7 Notifies Owners of the Rx. Trip within 15 minutes of a unit trig
1 2 Loss of All AFW Flow Rec 8 Dispatches PO to check valve line up on B SG
N eed 1 2 Loss of All AFW Flow Rec 9 Reports criteria to enter FRH1 is met.
o . 1 2 Loss of All AFW Flow Rec 10 Determines FRH1 is required.
1.Failure of A (Error In Execution) . 2 Loss of AlLAFW Flow Rec 11 ENTERS and Dircts FR1
. . 1 2 Loss of All AFW Flow Rec 12 Determines Bleed and Feed is Required based on requiremen
2 . Fa'lu re Of A due to E'Tor mn D 1 2 Loss of All AFW Flow Rec 13 Determines Feed & Bleed is required based on FR-H.1 step 9.
3 - Fallu re I n D 1 3 Commences FEED and BL 1 Determines Recirc valve is open and orders AF-009 to be shut

4. Failure of D due to failure of I
5.Failure in I 2
6.Incorrect I from External Source U)m Recovery

ERSIT,

@ A.JaMES CLARK 17
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Next steps: DBNs for HFE dependency

= Dynamic Belief Networks (DBNs) to model dependency between
sequential activities (human failure events)
= First proposed in Groth (2009), Mosleh (2012); Expanded in PHOENIX
(Ekanem & Mosleh 2013) and HUNTER (Boring et al 2015)

Repeated BNs for each MCF:

Detection PSFs Diagnosis PSFs Lol sl
ki PSFs v

With PIF lag/linger & HFE-to-subsequent-HFE dependency

= A.JAMES CLARK 18
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Conclusions

1. Using HRA data to improve HRA models adds
credibility, traceability — but requires new approaches.

2. HRA data needs to be combined with causal
understanding of failure (cognitive “physics of failure”
for human-machine teams) to deal with inherent data
limitations — requires BNs & data fusion.

3. Each data source can quantify a portion of the models -
SACADA readily enables quantification of Pr(failure
mode|PIFs)

4. New potential of SACADA: enabling first look into
temporal evolution of human error & PIFs

& A James CLark 19
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nominal - —_———— —
T Model structure: Built S E &)
Clear display from existing HRA \§\_§ / =
Indicators method (SPAR-H) g
of range for 5 A P(kwm)’;xf’(twm\}’srﬁ )= PPSFS), Detection PSFs Diagnosis PSFs Copy of Detection
Comparison casy it el v Prior probabilities: Use s —_— 7 PSFs
1 locate existing HRA method & | P(Eor) = MIEP- [T PSFe [ | 7

7]
expert elicitation e ]
Data: Extract from == — -
simulator data from
nuclear power researc
= & EEE S Detection1 Diagnose1 . Detection2 S

Method: Implement ki [ 7l

. Step1

Bayes’ Theorem to
update probabilities in
model Stepd

Step2

LILIIT

Thank you!

Katrina Groth
kgroth@umd.edu

ERSIT,
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Draft Algorithm

— i Model structure: Built o) oy G — )
q fi

Clear display i
of range for C2LOLS ini ristoc :

8¢ a T = 7 Detection PSFs Diagnosis PSFs Copy of Detection
comparison 8| PEmon- NiiEP PSFs

® o e i zl kil S
! ectati:
iC © ias h - - =5
Detection1 Diagnose1 Detection2 DecidePlan2
| 7] il

mmmmm
SPSFs 7]

LILIIT

1. For each MCF: Create a causal map (BN) of the relationship between the failure
modes, proximate causes of failure, failure mechanisms, and PIFs (Zwirglmaier,
Straub, Groth 2017)

2. Use node reduction to simplify BBN structure for quantification (Zwirglmaier,
Straub, Groth 2017)

3. Identify which arcs & probability tables can be quantified using each type of data

I. Pr(PIFs)) and Pr(PIFs|PIFs)
2. Pr(Failure modes | PIFs)
3. If needed: Pr(failure modes|failure mechanisms) and Pr(Failure mechanisms | PIFs)

4.  For each data source: map data source variables to BN nodes

5. For each additional data source: Bayesian update probability of relevant arcs (See:
Groth, Swiler, Smith 2014)
6. Extend BN to DBN to capture temporal dependencies.

7.  End. (Now use the BBN for HRA)

¥ @ A.JAMES CLARK
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Matlab Algorithm

* Implemented algorithm MATLAB and GeNie that performs
the following tasks:

J Read and process SACADA data into data analysis elements:
State Names, States, and State Assignments for SACADA Data
Conditional probability for PIFs with respect to SACADA States
State Assignments and PIF’s of all data under SACADA States

J Generate BBN conditional probability tables from the state and PIF
data

O Elicit prior data into prior distribution for (HEP|PIFs), Pr(PSFs)

1 OR (or Noisy OR) gate for Pr(failure mode|failure mechanisms) and
Pr(error|failure mode)

[ Perform Bayesian updating and produce the posterior HEP distribution
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Summary of proposed model 5%
development approach ;’,?m

= Use clearly defined taxonomy of PIFs as basis for modeling

= Provides application neutral, clearly defined, non-overlapping set of factors for modeling
use

= Build BN causal model for each failure mode (based on macro-cognitive
functions & human failure mechanisms)
= Build causal structure for each BN based on published NRC Cognitive Basis
for HRA (Whaley et al 2016).
=  Apply node reduction to simplify model structure to critical
variables

=  Quantify prior model(expert elicitation + existing HRA + other data)

= Using existing HRA methods and published data sources as done in previous
work.

= Bayesian Update model using SACADA data

= Develop mapping of SACADA data onto nodes of BN model
= Conduct Bayesian updating on the conditional probability tables using method

& 4 mesdadihte dynamic space using DBNs + IDAC 24
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Taxonomy of PIFs

= Provides application neutral, clearly defined, non-overlapping set of causal factofs

for modeling use.

Organization | Team Person Machine
|Training Program Communication Attention HSI
Availability Availability To Task Input
Quality Quality To Surroundings Output
. . . .. Physical & Psychological
Corrective Action Program Direct Supervision Abilitics System Response
Availability Leadership Alertness Ambiguity
Quality Team Member Fatigue
Dther Programs Team Coordination Impairment
Availability Team Cohesion Sensory Limits
Quality Role Awareness Physical Attributes
Safety Culture Other
Management Activities Knowledge/Experience
Staffing Skills
Number Bias
Qualification Familiarity with Situation

Team Composition
Scheduling
Prioritization
Frequency
Workplace Adequacy
Resources
Procedures
Availability
Quality
Tools
Availability
Quality
Necessary Information
Auvailability
Quality

Morale/Motivation/Attitude
Problem Solving Style
Information Use
Prioritization

Conflicting Goals
Task Order
Compliance

.2

SYRrRA

Stressors
External Environment Severity
Hardware & Software Conditions:  Urgency
Task Load >erceived Decision
Time Load Responsibility
Other Loads Impact
Non-task Personal
Passive Information Plant
Task Complexity Society
Cognitive
Execution

Groth & Mosleh (2012). A data-informed PIF hierarchy for model-based Human Reliability Analysis. Reliability
Engineering and sttem Safez, 108, 154-174.
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Example BN built directly from

SACADA “Diagnosis” SFs

(O Information specificity

(@] Outcome

sSYrRrRA

Missinginfo ) { Misleadinginfo Conflictinginfo
ki) K ki ]

Specific
Nonspecific

r’}",

ToProcedure
ToSkill

\“gRSI)tP
N
18

(O Information Integration

Required
NotRequired

[7]
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[} Familiarity (O Diagnosis Basis
Standard Skill

Novel Procedure

Anomaly Knowledge

~a WYX

(O Information quality
Degraded
~|Normal
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