A Novel Capsule Neural Network Based Model For Drowsiness Detection Using Electroencephalography Signals

Luis Guarda Bräuning⁽¹⁾

Nicolas Astorga⁽¹⁾

Enrique López Droguett⁽¹⁾

Marcio Moura⁽²⁾

Marcelo Martins ⁽³⁾

⁽¹⁾ Mechanical Engineering Department, University of Chile
 ⁽²⁾ Industrial Engineering Department, Federal University of Pernambuco, Brazil
 ⁽³⁾ Naval Engineering, University of Sao Paulo, Brazil

DROWSINESS

- State of consciousness with oscillations between sleep and wakefulness, and an irresistible desire to sleep.
- Low in the cognitive and psychomotor performance of the subject.

Source: http://www.achs.cl/portal/Comunidad/Paginas/Campana-Fatiga.aspx

ELECTROENCEPHALOGRAPHY

• Record bioelectric activity generated by the cortical neurons.

Source: T. C. Technologies, Cortical Functions, Hong Kong, 2012.

KAROLINSKA SLEEPINESS SCALE (KSS)

- Subjective level of sleepiness perceived by the individual.
- Significant KSS-EEG relationship.

Rating	Verbal descriptions
1.	Extremely alert
2.	Very alert
3.	Alert
4.	Fairly alert
5.	Neither alert nor sleepy
6.	Some signs of sleepiness
7.	Sleepy, but no effort to keep alert
8.	Sleepy, some effort to keep alert
9.	Very sleepy, great effort to keep alert, fighting sleep

 Table 1: Karolinska Sleepniness Scale.

WHY DEEP LEARNING?

WHY DEEP LEARNING?

Deep Learning ≈ **Representation Learning**

Deep Learning Provides Automatic Feature Engineering

CONVOLUTIONAL NEURAL NETWORKS

Architecture:

Convolutional layer

- Pooling layer
- Fully connected layer

Advantage/Disadvantage:

✓ Fewer parameters

CONVOLUTIONAL LAYERS

CONVOLUTIONAL LAYERS

• Different values of the kernel matrix will produce different feature maps for the same input image:

WHAT IS WRONG WITH CNN?

- CNN needs a massive dataset
- Translation invariance (viewpoint)
- Pooling layer → loss of information → spatial relation problem

Spatial relation example.

Translation invariance example.

CAPSULE NEURAL NETWORK

- Capsules are group of neurons represented as a vector, where each neuron represents a feature from object
- Capsules are organized in layers with different levels of hierarchy
- Through *Dynamic Routing* each capsule in a layer makes a prediction about the output of the capsules in the next layer

CAPSULE NEURAL NETWORK

CNN vs CapsNet

• Differences between CNN and CapsNet:

	Capsule	vs. Traditional Neur	ron
Input from capsule	n low-level /neuron	$ $ vector(\mathbf{u}_i)	$\operatorname{scalar}(x_i)$
	Affine Transform	$ig \widehat{\mathbf{u}}_{j i} = \mathbf{W}_{ij} \mathbf{u}_i$	_
Operation	Weighting	$igg \mathbf{s}_j = \sum_i c_{ij} \widehat{\mathbf{u}}_{j i}$	$\left \begin{array}{c} a_j = \sum_i w_i x_i + b \end{array} \right $
	Sum		
	Nonlinear Activation	$\mathbf{v}_j = rac{\ \mathbf{s}_j\ ^2}{1+\ \mathbf{s}_j\ ^2} rac{\mathbf{s}_j}{\ \mathbf{s}_j\ }$	$h_j = f(a_j)$
Out	tput	$ $ vector (\mathbf{v}_j)	$ $ scalar (h_j) $ $

DE

CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

EXPERIMENT

- 14 young, healthy subjects (11 females, 3 males)
- Three successive 10 minutes psychomotor vigilance tests (PVT's)
- Sleep deprivation induced by prolonged wakefulness

			DAY 1							DA	Y 2		
7:	00 8:	30 10	:00 11: 	:00 12	:00	20::	30	3:	30 4	:00 	12	2:00	12:30
			PVT1						PVT2			P	/T3
Subject free	e	Subject at	the lab.	Subject	t free + ac	tigraph		5	Subject	at tl	ne lab.		
Normal sleep					Slee	p depriva	ation						
]	No stii	nulant				

Pictorial summary of data collection schedule.

Source: Q. Massoz, T. Langohr, . C. Francois y J. G. Verly, "The ULg Multimodality Drowsiness Database (called DROZY) and Examples of Use", 2016.

DATABASE

KSS Scores

Stimulus times and corresponding reaction times

Kinect v2 sensor images

Kinect v2 sensor videos

Face landmarks (obtained manually)

Face landmarks (obtained automatically)

Polysomnography signals (5 EEG channels)

DATABASE

KSS Scores

Stimulus times and corresponding reaction times

Kinect v2 sensor images

Kinect v2 sensor videos

Face landmarks (obtained manually)

Face landmarks (obtained automatically)

Polysomnography signals (5 EEG channels)

Selection of EEG channels (*Fz* y *Pz*)

Selection of EEG channels (*Fz* y *Pz*)

Generation of labels using KSS

Karolinska Sleepniness Scale.

Rating	Verbal descriptions
1.	Extremely alert
2.	Very alert
3.	Alert
4.	Fairly alert
5.	Neither alert nor sleepy
6.	Some signs of sleepiness
7.	Sleepy, but no effort to keep alert
8.	Sleepy, some effort to keep alert
9.	Very sleepy, great effort to keep alert, fighting sleep

PROPOSED CNN MODEL

PROPOSED CAPSNET MODEL

Models validation and comparison with Neural Network (NN), Support Vector Machines (SVM) and Random Forest (RF)

RESULTS

		Per	formance	e me	etrics f	or	CNN and C	CapsNet.			
Dataset	Mod	el	Accuracy			F1 So	core	Sensitivity			
-	CN	N	79,46%	, ±	4,60	%	79,55% [±]	4,36%	80,8	80% ±	3,95%
Fz	Caps	Net	84,45%	, ±	0,62	%	83,76% [±]	<mark>l</mark> 0,65%	85,8	51% [±]	0,97%
	CN	N	75,86%	, <u>+</u>	2,39	%	76,93% ±	3,24%	79,4	7% [±]	5,54%
Fz-Pz 	Caps ataset	Net Mo	- - <u>86,74%</u> odel	<u>, ±</u>	1,57 [.] Spec	% cific	85,97% city	<u> </u> 	87,5 ecisio	,7% ± 2011	4 ,67%
	_	С	NN	78,	07%	1	5,41%	78,30%	Ŧ	4,96%)
	⊢z -	Cap	osNet	83,	26%	Ę	0,91%	81,81%	Ę	0,81%)
			NN	71,9	98 %	Ę	2,82%	74,67 %	Ŧ	2,68%	
ŕ	-z-Pz -	Car	asNet	86	53 %	4	1 20%	85 20%	ł	3 5 2 %	
		Ua	JOINEL	00,	JJ /0		┓,८७७	00,2070		J,JZ /0	

RESULTS

		Performan	ce metrics for	r SVM, RF a	and NN.				
Dataset	Mode	I Ac	curacy	F1 Sc	ore	Sensitivity			
	SVM	67,28%	6 [±] 3,06%	66,13% [±]	3,65%	63,85% [±]	4,13%		
Fz	RF	73,58%	6 [±] 3,39%	72,00% [±]	3,66%	68,12% [±]	6,42%		
	NN	 69,56%	6 [±] 2,46%	68,11% [±]	4,11%	65,62% [±]	7,73%		
	SVM	71,30%	6 [±] 3,67%	72,59% [±]	1,83%	72,16% [±]	3,46%		
Fz-Pz	RF	72,50%	6 [±] 4,90%	71,00% [±]	5,63%	68,28% [±]	7,58%		
Da	tasetNN	 Mo đ∉ ļ28%	6 [±] Specifi	cðŷ ,13% [±]	3,65 P/re	£	4,13%		
		SVM	70,84% [±]	6,00%	69,94%	[±] 6,07%			
	Fz	RF	79,71% [±]	8,81%	77,48%	[±] 8,62%			
		NN	72,97% [±]	7,10%	71,29%	[±] 2,10%			
		SVM	69,58% [±]	9,88%	73,25%	[±] 3,86%			
F	z-Pz	RF	76,68% [±]	2,82%	74,11%	[±] 3,49%			
			80,69% [±]	7,31%	74,99%	[±] 7,26%			

CONCLUSIONS

- Theta waves variations are more significant than that of the alpha waves
- *Fz* channel represents the best option to detect drowsiness
- CapsNet delivers better average results and smaller standard deviations
- Automatic feature extraction via convolutional layers
- CapsNet model handles smaller datasets better
- CapsNet handles transient signals and positional invariance
- Deep CapsNet model seems to be a promising approach for dealing with bioelectrical signals for drowsiness detection

