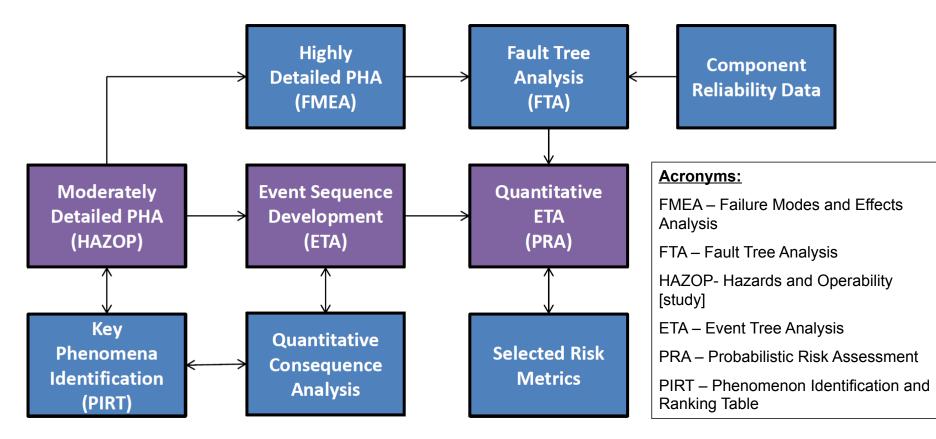


Application of a Method to Estimate Risk in Advanced Nuclear Reactors

A Case Study on the MSRE

Brandon Chisholm and Steve Krahn, Vanderbilt University Andrew Sowder, EPRI Amir Afzali, Southern Company Services

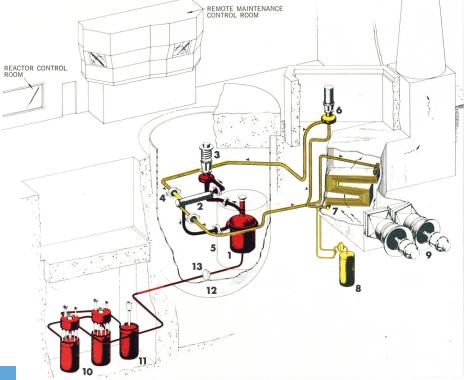
> PSAM14 19 September 2018 Los Angeles, CA



Introduction

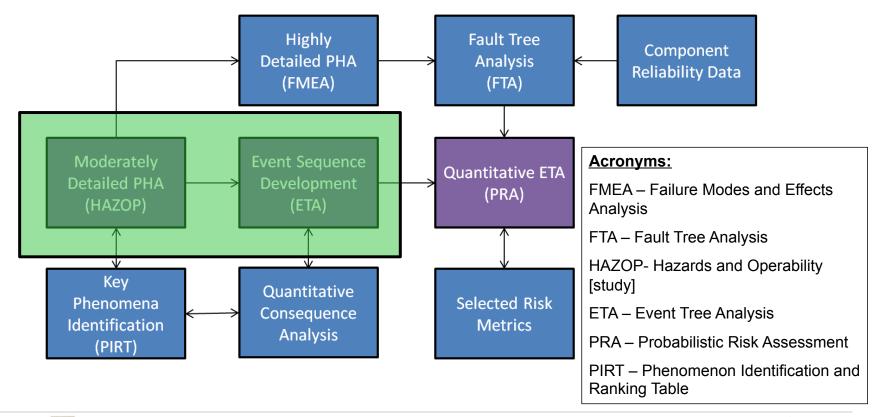
- Reactor developers seeking advanced reactor design certification and/or licensing face challenges in efficiently demonstrating their safety case in that the designs:
 - have limited to no commercial operating experience
 - incorporate many novel design elements
 - may have unique radioactive material inventories
- Consistent with a long-stated objective of the industry and the NRC, industry has initiated a number of activities to get NRC endorsement of a risk-informed, performance-based process to help gain this efficiency.
- As part of EPRI's PHA-to-PRA project, a methodology is being developed to shape the PHA process to support developers in executing the proposed industry approach.
 - PHA methods are a technology-neutral and industry-standard tool that allow for an iterative approach to identify hazards in a process or a design
 - The methodology influences and coordinates with other established elements of safety analysis essential for the development of the nuclear safety design and licensing basis
 - Early safety evaluations serve as building blocks for more extensive risk assessments

PHA-to-PRA Methodology

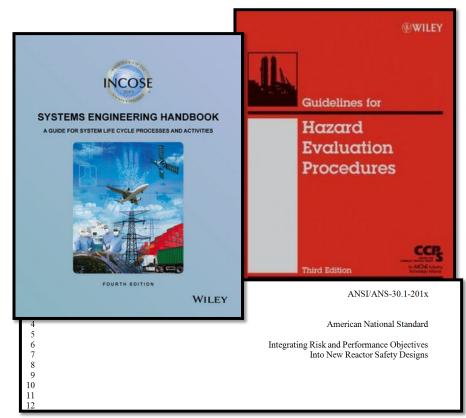


Molten Salt Reactor Experiment (MSRE) Case Study

- Phase II of PHA-to-PRA project
- MSRE operated from 1965 to 1969 at ORNL (max power = 8 MW_{th})
 - Liquid (dissolved) fuel design
 - Graphite moderated, thermal-spectrum
 - Fluoride-based (FLiBe) fuel and coolant salts
 - Completed runs using ²³⁵U and ²³³U fuels
- PHA studies completed of each major inventory of radioactive material:
 - Fuel salt loop
 - Off-gas system (handled gaseous fission products)
 - Fuel processing system (batch process)


Extensive design, testing, and operations information available

- 1. Reactor Vessel, 2. Heat Exchanger, 3. Fuel Pump, 4. Freeze Flange, 5. Thermal Shield,
- 6. Coolant Pump, 7. Radiator, 8. Coolant Drain Tank, 9. Fans, 10. Fuel Drain Tanks,
- 11. Flush Tank, 12. Containment Vessel, 13. Freeze Valve.


PHA-to-PRA Methodology: HAZOP to Qualitative ETA

Preparing for PHA: System Characterization

- Identify major hazardous material inventories
 - Hazards could be radiological or chemical in nature
 - Important to understand amount and form of material
 - Can help prioritize first nodes to be analyzed
- Define and understand nodes for PHA studies
 - Functional decomposition is useful
 - Imperative to give adequate attention to interfaces between nodes
- Develop list of important hazards to be considered
 - Goal is to capture phenomena that could challenge barriers to release of hazardous material

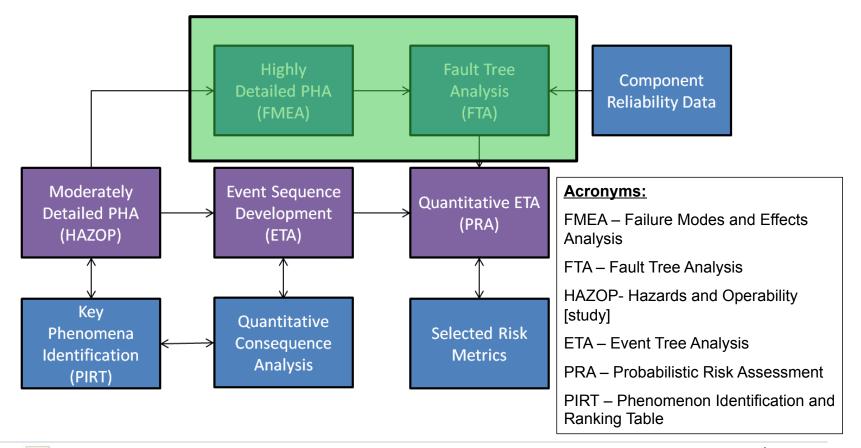
Primary PHA Method: Hazards and Operability (HAZOP) Study

- A HAZOP study is a structured and systematic technique to identify potential <u>hazards</u> and <u>operability</u> problems
 - Guided by assumption that safety-significant incidents represent deviations from normal operating conditions
- Combines available design and operational information with expert input in a structured, documented fashion
- Referenced in draft ASME non-LWR PRA Standard and accepted by NRC and DOE as a method to comprehensively identify system hazards
- Objective is to document specific operational deviations, which each deviation corresponding to a row in HAZOP table
- All meaningful deviations are discussed and recorded within each subsystem or node

NODE: 1.0			DATE REV	IEWED: 29-30 Nov 2017			
	RNL-TM-728						
 the continu intermitten particulates a flows of up 	ndles three different types lous flow of helium contai t, relatively large flows of ssociated with salt transfe to 100 cfm of very low ac reactor and drain tank cel	ning highly radioactive FF helium containing signific er operations ctivity cell atmosphere ga	ant amounts of radioactives and second	ve gases and			
through active charcoal beds	gas flows are held in pipir ated charcoal to remove a s, all three gas streams co efore being diluted with a	all radioactive isotopes ex ombine and then passes	cept for Kr-85, Xe-131m, through absolute and rou	and Xe-133. After the			
Important interfaces for this node include: a) radioactive gas flows in from the fuel salt pump bowl b) radioactive gas flows in from the fuel salt drain tank c) cell atmosphere flows in from the reactor cell d) heat is removed from the charcoal beds by the cooling water system e) the effluent gas is exhausted to the atmosphere							
Note: Capped cleanout	d and valved off sample a	nd TVC ports were instal	led in the system and we	re available for line			
ORNL-TM-72 ORNL-TM-72	AND DOCUMENTS 8 "MSRE Design and Op 9B "MSRE Design and O 39 "MSRE Systems and	perations Report Part IIB	: Nuclear and Process In				
DEVIATION	CAUSE	CONSEQUENCE	SAFETY SYSTEMS	ACTION			
Temp Increase	Failure of charcoal bed cell cooling water system (holdup volume and main charcoal beds)	Possible damage to beds from overheating Reduction in adsorber effectiveness, increased radioactivity of effluent	Thermocouples are installed at three locations on each of the main charcoal beds (one thermocouple on aux charcoal bed) to measure gas temperature Gas flow can be switched to aux charcoal bed	Investigate cooling of aux charcoal bed			

ELECTRIC POWER

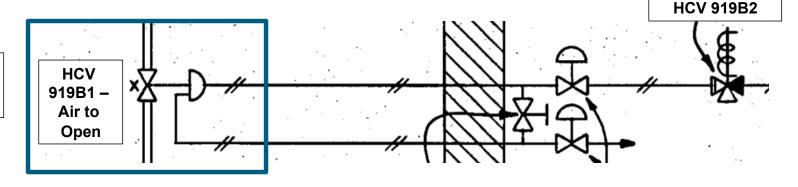
1


VANDERBILT

Creating Qualitative Event Trees from HAZOP Results

Deviation	Cause	Consequence	e	Sa	fety System(s)
Pressure Increase	High fuel salt pump bowl cover gas pressure (e.g. flow control valve failure)	 Increased off-ga entire system (\ trap, VH-2, chail Increased carry salt pump bowl Decreased resid VH-1, VH-2, and 	/H-1, particle rcoal bed) over from fuel	(- ٦ (• F V	Pressure indications in fuel salt pump bowl (PT-522/592) Temperature indications throughout system (TE-522-1, TE-524-1, TE-556-1A) Radiation monitors downstream of charcoal beds with automatic safety action (RM-557-A/B) Manual valves available to isolate off-gas flow (V522, V620-627, V557B)
-			-		
PUMP BOWL OVERPRESSURE		TOMATIC ISOLATION MANUAL ISOLA		TION	Consequence
			•		No increase in release rate
					Minimal to no increase in release rate
			1		Possible increase in release rate

PHA-to-PRA Methodology: FMEA to Qualitative FTA



ELECTRIC POWER RESEARCH INSTITUTE

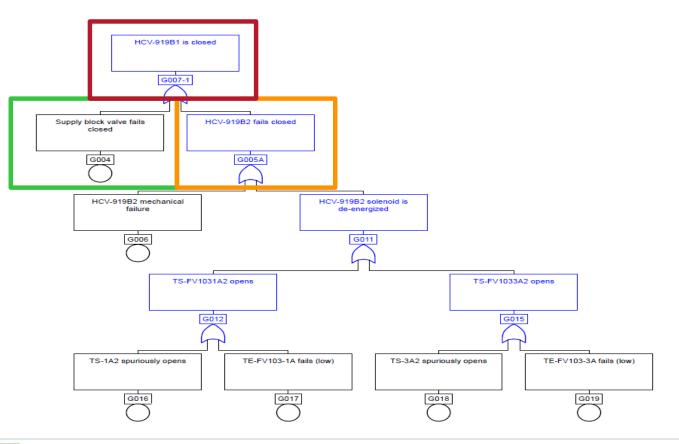
Failure Modes and Effects Analysis

- FMEA evaluates the ways equipment can fail (or be improperly operated) and the effects these failures can have on a system
 - Particularly applicable to systems consisting of mostly mechanical and/or electrical components
- Analysis considers potential consequences and relates them to potential equipment failures
- Each individual failure is considered as an independent occurrence, with no relation to other failures
 - Except for the subsequent effects that it might produce
 - In some circumstances, common cause failures may be considered

Freeze valve is "closed" if HCV 919B1 is open

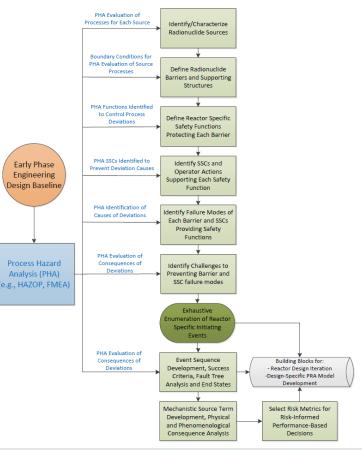
Solenoid Valve

10 VANDERBILT School of Engineering


FMEA Results

Identification/ Description	Failure Mode	Effect	Safety Systems
"Supply" block valve for HCV-919B1 (normally open)	Spuriously closes	Closes HCV-919B1, securing cooling gas flow to FV	Operator alarm on high freeze valve temperature, indication of freeze valve condition
Solenoid valve HCV-919B2	Spuriously closes	Closes HCV-919B1, securing cooling gas flow to FV	Operator alarm on high freeze valve temperature, indication of freeze valve condition
Temperature switch TS-FV103-1A2	Spuriously opens	De-energizes HCV-919B2 and HCV-919A2, secures cooling gas flow to FV	Operator alarm on high freeze valve temperature, indication of freeze valve condition
Thermocouple TE- FV103-1A	Failure (indicates lower temp than actual)	First, close TS-1A1 Then, open TS-1A2	TE-1B and TE-3B are displayed on recorder in aux control room

FTA Model


Preliminary Conclusions

- Industry-standard PHA techniques are useful tools to begin investigating the safety and reliability of non-LWR systems early in the design process
 - Moderately detailed methods (such as HAZOP studies) are well-suited for characterizing event sequences of interest
 - Highly detailed methods (such as FMEA) are well-suited for developing fault tree models
- Good systems engineering practices are beneficial in preparing a system design to be analyzed
 - The results of system characterization can also promote a more thorough understanding of the design
- The preliminary methodology being developed produces building blocks that will eventually be used to build a PRA model of an MSR

ELECTRIC POWER

Relationship to Licensing Modernization Project (LMP)

- Southern Company Services plans to use the MSRE case study results as a basis for LMP table top exercise with NRC
- Envision use of preliminary quantitative assessments as a potential basis to demonstrate:
 - selection of risk metrics
 - evaluation of licensing basis events (AOOs, DBEs, BDBEs)
 - screening selection of safety-related SSCs

VANDERBILT K School of Engineering

Acknowledgements

U.S. Department of Energy

Southern Company

¹⁵ VANDERBILT School of Engineering

Together...Shaping the Future of Electricity

Backup Slides

MSRE Case Study Related Work to Date

- Preliminary Reliability Analysis of Molten Salt Reactor Experiment
 Freeze Valves Accepted for presentation at 2018 Winter ANS Meeting
- Application of a Method to Estimate Risk in Advanced Nuclear Reactors: A Case Study on the Molten Salt Reactor Experiment – Accepted for presentation at PSAM14
- A Technology Neutral Safety Assessment Tool for Advanced Reactors: Preliminary Hazard Assessment and Component Reliability Database for the Molten Salt Reactor Experiment – Presented at ICAPP 2018
- Licensing Basis Event Selection Case Study: The Molten Salt Reactor Experiment – Presented at 2017 ORNL MSR Workshop, ORNL Technical Report to be published
- Preliminary Risk Assessment of a Generalized Molten Salt Reactor Off-Gas System – Presented at 2017 Winter ANS Meeting

