Introduction

- Post-disaster restoration planning for a water supply system is important but very difficult.
- Difficulties in restoration planning:
 - 1. Situation awareness in dynamic and uncertain situation
 - \rightarrow Technical problem
 - 2. Prioritization in restoration process
 - \rightarrow Socio-technical problem
- Great need for a high-fidelity simulation of water supply system restoration for testing and comparing various prioritizations

Objective

- 1. To develop a high-fidelity simulation of water supply system restoration
 - Considering multiple interdependencies underlying urban systems
 - Implementing a realistic restoration task
 - Considering hydrodynamic behavior of water distribution system
 - Using the actual city data
- 2. To apply this simulation to practical decision-making support
 - Restoration planning reflecting the priority in restoration process

Modeling Framework

[1] Kanno, T., Koike, S., Suzuki, T., & Furuta, K. (2018). Human-centered modeling framework of multiple interdependency in urban systems for simulation of post-disaster recovery processes. Cognition, Technology & Work, 1-16.

Multiple Interdependencies

		On		
		Civil Life	Industry	Lifeline
e	Civil Life	 Between civil life Means-ends Resource conflict Geographical 	2) Civil life on industrySupplyGeographical	 3) Civil life on lifeline Supply Geographical
Jependence Of	Industry	 4) Industry on civil life (Labor) Supply Geographical 	 5) Between industry Supply Demand Alternative Geographical 	6) Industry on lifelineSupplyGeographical
Ι	Lifeline	 7) Lifeline on civil life Demand (Labor) Supply Geographical 	 8) Lifeline on industry Demand Supply Geographical 	 9) Between lifeline Supply Demand Alternative Geographical

Simulation Model

- Agent-based model
 - Citizen: daily activity
 - Company: production process
 - Restoration Squad: restoration process

- Network model
 - Lifeline Infrastructures
 - Power grid, <u>water supply</u>, sewage, gas, <u>road</u>, waste disposal, telecommunication, etc.

Restoration Task

- Restoration procedure
 - 1. Get the resources for restoration from the warehouse
 - 2. Move to the damaged pipeline
 - 3. Repair by using the resources

+

- Realistic restoration operations
 - Operate valves
 - Use a heavy machinery
 - Partition the affected area and repair in block units
 - Distribute water tank trucks
 - Receive the support from outside the city

Hydrodynamic Behavior

- Hydrodynamic Analysis API (EPANET)
 - Calculate the water demand, flow, pressure, and so on
 - Evaluate the water availability of each residence / company
 - <u>https://www.epa.gov/water-research/epanet</u>

City Model

- Target area under this study
 - Arao city
 - In Kumamoto prefecture, Japan
 - With a population of about 50,000 people
- City model considering:
 - Population and its distribution
 - Number of companies
 - Location of impportant facilities such as hospitals and evacuation centers
 - Road network topology from OSM
 - Water supply network topology

Optimization of Restoration Plan

- Genetic Algorithm (GA)
 - Chromosome: restoration plan
 - the order of restoration for damaged pipelines
 - the squad in charge of the restoration

 $fitness = \alpha \times fitness_L + \beta \times fitness_I + \gamma \times fitness_C$ $fitness_L (Lifeline) \quad \text{Restoration rate}$ $fitness_I (Industry) \quad \text{Operation rate}$ $fitness_C (Civil Life) \quad \text{Quality of life}$

– Weight coefficients (α , β , γ) = the priority of each subsystem

Simulation

• Simulation Procedure

Simulation Setting

	Nodes	173
Network	Links	199
	Damaged Links (*2)	40
	Company	153
Agent	Residence	257
	Citizen / Worker (*3)	1540
	Population	100
	Generations	10000
GA	Selection Rate	0.5
	Crossover Rate	0.3
	Mutation Rate	0.1

(*1) only the central part of Arao city

(*2) estimated by potential earthquake damage

10 (*3) 1 agent representing approx. 11 people

Simulation Results (1)

- As the number of generations increases, the fitness value becomes higher.
- The optimized plan was 5 days shorter than non-optimized plan.
- GA optimization works appropriately.

Simulation Results (2)

• We can observe and evaluate the restoration process of each three subsystem.

Simulation Results (3)

- The different objective functions provide slightly different results.
- We can compare the optimized restoration under various prioritizations.

Conclusion

- A high-fidelity simulation of water supply system restoration was developed.
 - Considering multiple interdependencies underlying urban systems
 - Implementing a realistic restoration task
 - Considering hydrodynamic behavior of water distribution system
 - Using the actual city data
- Optimization of restoration plan using GA was conducted.
 - GA optimization works appropriately.
 - We can observe the restoration process of each three subsystem.
 - We can compare the optimized restoration under various prioritizations.

Thank You!

s-koike@cse.t.u-tokyo.ac.jp

Cognitive Systems Engineering Laboratory Department of Systems Innovation The University of Tokyo