

Quantitative reliability demonstration from production to operation on the example of the new radiation tolerant power converter controller for the Large Hadron Collider

> PSAM 14 Sept. 16-21, 2018 Los Angeles, CA

Tamer Tevetoğlu

Introduction

FGC2 → FGClite

- Radiation tolerance (single event effects (SEE))
- Simplified hardware 'lite' FGC
- 20 years of electrical reliability
- Specifications:
 - Maximum 10 electrical failures per year
 - Production quality: Goal < 1% failures
 - 1094 FGClite in operation + 377 spares (1471 cassettes)
 - Proven lifetime of 100k hours prior to deployment

Agenda

Introduction

- Reliability Prediction of the FGClite
- Quantitative Reliability Demonstration
 - Production Quality
 - Reception Tests
 - Field Reliability
- Conclusion and Outlook

Reliability Prediction of the FGClite

Goal:

- Prediction of the field failure rate λ of the FGClite
- Design iterations and improvements at component and system level

Standard/Method	Last update
MIL-HDBK-217F Notice 2	1995
FIDES Guide	2009
217Plus™:2015	2015
Bellcore/Telcordia SR-332 Issue 4	2016

System	MTTF Prediction [h]	Field MTTF [h]	Magnitude
FGC2	104K	1.1M	x10.6
FGCLITE	198K	unknown	unknown

Overview

Production Quality

Goal:

- < 1% faulty boards</p>
- Discover production flaws
- Guarantee enough functional boards for FGClite

Approach:

- Functional tests based on the NI PXI test platform
- 100% of the population is tested
- Assumption: Failures are binomially distributed
- Repairs conform to IPC Class 3 standard

Production Quality

		•		
Board	Produced and tested until August 2017	No. of failures until August	Probability of failure (failed/ tested)	Prediction made in February 2017
	Ũ	2017		
AB	1481	62	4.19%	52 ≤ r ≤ 82
СВ	1534	20	1.30%	13 ≤ r ≤ 30
PB	1550	19	1.23%	10 ≤ r ≤ 26
MB	1498	5	0.33%	4 ≤ r ≤ 16
IOB	1472	4	0.27%	2 ≤ r ≤ 12
ХВ	1506	4	0.27%	$2 \le r \le 9$

Reception Tests

- Goal:
 - · Lower no. of early failures in the field
 - Design validation prior to deployment
 - Proof of min. MTTF=100K hours (95% CL)

Reception Tests

- Goal:
 - · Lower no. of early failures in the field
 - Design validation prior to deployment
 - Proof of min. MTTF=100K hours (95% CL)
- Approach:
 - Validate test equipment: 4 Racks
 - 2x Run-in: 36°C (required min. 30°C)
 - 2x Burn-in: 55°C (required min. 50°C → FGC2 cracks in vias)
 - Assess each failure mode (systematic/non-systematic)
 - Failure analysis strategy
 - Temperature of each FGClite is being tracked

Reception Tests

- Improved overall reliability → Preventive FPGA firmware Update
- MTTF=92K dev*h (95% confidence interval)

Field Reliability

10 real failures (+8 false positives=18 total)			
Quantity	Malfunction	Repair	Comments
3	ADC gain error to high	On-going (HPM)	Failed after several months in operation
2	1-Wire	1x Replace oxidized relay RL1	Failed after several
		1x On-going	weeks in operation
1	No connection to device after reprogramming attempt	On-going	Reprogramming attempt in laboratory failed as well
1	JTAG connector	Resolder connector	-
1	NANOFIP connect	or Replace connector	Pin was not broken in the laboratory tests
1	Mainboard connect	tor Replace connector	-
1	Missing LED lense	Mount missing lenses on front panel	-

- → Proven MTTF=601K dev*h
- 10 real failures:
 - 6 in operation
 - 4 sorted out during installation

Field Reliability

- Goal: 1,000,000 dev*h (95% confidence interval)
 - 10 electrical failures per year
 - 200 failures in 20 years
- Available no. of spares: 344
- Currently proven MTTF=601K dev*h (March 2018)

→ needed spares for MTTF=601K dev*h: 378 (Poisson Distribution)

• Data from operation indicates a shape parameter β of 0.85

Conclusion and Outlook

Reliability prediction:

• Use of newer prediction methods (217Plus is used at CERN (BE))

Production Quality:

• The whole population of devices is to be screened prior to deployment

Reception tests:

- · Can lead to preventive firmware updates that improve the overall reliability
- Lowers the failure rate prior to operation
- If overall $\beta < 1 \rightarrow$ emphasis on reception tests in order to guarantee high reliability
- The assumption of a constant failure is sufficiently good and on the safe side, as the actual shape parameter for electronics seems to be less than 1

Field data:

- Continuous monitoring of failure rate and MTTF, respectively
- Proven 1M dev*h in early 2019

Thank you!

Tamer Tevetoğlu

e-mail	tamer.tevetoglu@ima.uni-stuttgart.de
phone	+49 (0) 711 685-69952
fax	+49 (0) 711 685-66319

Universität Stuttgart Institute of Machine Components (IMA) Pfaffenwaldring 9 · 70569 Stuttgart · Germany

BACKUP

Field reliability

- Each spike \rightarrow Failure
- Curve approaches true mean lifetime of the population
- → 'Law of large numbers'

Field reliability

- Each spike → Failure
- Curve approaches true mean lifetime of the population
- →'Law of large numbers'

Without reception tests:

- Higher failure rate, lower MTTF
- > First half of the bathtub curve
- Proven MTTF=60K dev*h

instead 601K dev*h (in Aug 2017)

Field reliability

Issue: Unknown failure mechanism

- $\beta = 1.885 \rightarrow$ early wear-out
- Not enough data for conclusive analysis

(min. 5 needed)

 225 days until all devices with the same failure mode fail (50% confidence)

Useful lifetime [days]	Temperature [K]	What failed?
44		
58	303.15	Internal calibration
128		

Reliability Prediction of the FGClite

- Critical Examination:
 - Statistical uncertainty not known (point estimates)
 - Predictions can be too optimistic as well as too pessimistic
 - No way to assess results prospectively
- Conclusion:
 - Do not use MIL-HDBK-217F
 - 217Plus or FIDES recommended
 - Design should be conform to industrial standards

Reliability Basics

Reliability R:
$$R(t) = 1 - F(t) = e^{-\left(\frac{t}{\eta}\right)^{\beta}} = e^{-(\lambda \cdot t)^{\beta}}$$

Electronics: Constant failure rate (exponentially distributed)

Mean Time To Failure: $E_{Exp.-Distr.}(X) = MTTF = \frac{1}{\lambda} = \eta$ (non-repairable)

Estimation of
$$\eta$$
: $\eta \approx \eta_{MLE} = \left[\sum_{i=1}^{N} \frac{t_i^{\beta}}{r}\right]^{\frac{1}{\beta}} = \sum_{i=1}^{N} \frac{t_i}{r}$

$$MTTF = E(X) = \int_{0}^{\infty} R(t)dt = \eta \cdot \Gamma\left(1 + \frac{1}{\beta}\right) + \gamma$$

Parameter	Meaning
F	Unreliability [0,1]
η	Characteristic lifetime
β	Weibull shape parameter
t	Lifetime, no. Of cycles
r	No. of failures
Ν	No. of devices

Reliability Basics

Confidence Bounds: Chi-Square distribution (proven *MTTF*)

$$\eta_C = \left[\frac{2 \cdot \sum_{i=1}^N t_i^{\beta}}{\chi^2(C;2r+2)}\right]^{\frac{1}{\beta}}$$

Accelerated Life Testing:

• Arrhenius equation:
$$AF_T = e^{\left[\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_{AF}}\right)\right]}$$

E_a	Activation energy in electron volts [eV]
k	Boltzmann's constant $(8.617 \cdot 10^{-5} [eV/K])$
T_U	junction temperature at normal use conditions
T_{AF}	junction temperature at accelerated conditions
AF_T	Acceleration factor

