

PSAM14 Estimation of Ignition Frequencies in LPSD fire PRA

2018.09.

newpower, newstandard

Index

Nuclear Safety First, Last and Always

newpower, newstandard

- 1. Introduction
- 2. Methodology
- 3. Analysis Result
- 4. Summary

Introduction

newpower, newstanda

Fire Frequency

- Definition : Probability of the fire induced accident
- Characteristics : Same role as initiating events in internal event PRA

Purpose of the paper

- Suggestion of calculation method of LPSD fire frequency
- > Inspiration about de-energized equipment in fire frequency calculation

Calculation of Fire Frequency

 $\lambda_{IS,J} = \lambda_{IS} W_L W_{IS,J,L}$

λ_{IS,J}: Fire frequency of ignition source IS in Compartment J
λ_{IS}: Plant-level fire frequency of ignition source IS
W_L: Location weighting factor
W_{IS,J,L}: Ignition source weighting factor = N_J / N_L

newpower, newstandard

POS(Plant Operating States)

- Classification of operation modes
- Classified in terms of system configuration and equipment alignment

POS NO.	Duration(hr)	Description
3B	37.6	Cooldown with Shutdown Cooling System to 140°F
4A	1.3	Reactor Coolant System drain-down(pressurizer man way closed)
4B	20.3	Reactor Coolant System drain-down(pressurizer man way open)
5	16.8	Reduced Inventory operation and nozzle dam installati on
6	54.9	Fill for refueling
10	85.7	Reactor Coolant System drain-down to Reduced Inve ntory after refueling

Nuclear Safety First, Last and Always

newpower, newstandar

Calculation of Fire Frequency

 $\lambda_{IS,J,LPSD} = \lambda_{IS,J} T_{LPSD}$

 $\lambda_{IS,J,LPSD}$: Fire frequency associated with ignition source IS in LPSD T_{LPSD}: Outage fraction

$$\lambda_{POS-IS,J} = \lambda_{IS,J,LPSD} T_{POS}$$

 $\lambda_{POS-IS,J}$: Fire frequency in specific POS T_{POS}: POS duration fraction

Nuclear Safety First, Last and Always

newpower, newstandard

Calculation of Fire Frequency

Compartment A	Compartment B	$W_{IS,J,L} = {}^{N_J}/{}_{N_L}$				
Equipment A	Equipment B	N _J : # of ignition source in Compartment J N _L : # of ignition source in all location				
Compartment C	Compartment D	Case 1 Case 2				
Equipment C	Equipment D (Maintenance)	N _L 4 3				

newpower, newstandard

Methodology

Equipment State

DOC	СНР		DG		CSP		SCSP	
POS	А	В	А	В	А	В	А	В
3B	R	S	S	М	RO	RO	R	S
4A	R	S	S	М	RO	RO	R	S
4B	R	S	S	М	RO	RO	R	S
5	R	S	S	М	RO	RO	R	S
6	R	S	S	М	RO	RO	R	S
10	S	R	М	S	RO	RO	S	R

7

R : Running

DEPEOERC

M : Maintenance

S : Standby RO : Racked out

Analysis Result

Nuclear Safety First, Last and Always

newpower, newstandard

Calculation of Fire Frequency

POS	DG Room A					NL		
	POS	Frequency (Case 1)	Frequency (C ase 2)	Increase	Equipment State	(Case 1)	(Case 2)	NJ
	3B	2.68E-05	3.40E-05	27%	Standby	4	3	1
	4A	9.28E-07	1.18E-06	27%	Standby	4	3	1
	4B	1.45E-05	1.84E-05	27%	Standby	4	3	1
	5	1.20E-05	1.52E-05	27%	Standby	4	3	1
	6	3.92E-05	4.97E-05	27%	Standby	4	3	1
	10	1.16E-05	1.16E-05	0%	Maintenance	4	3	0

Analysis Result

Nuclear Safety First, Last and Always

newpower, newstandard

Calculation of Fire Frequency

	DG Room B				NL	NL	
POS	Frequency (Case 1)	Frequency (C ase 2)	Increase	Equipment State	(Case 1)	(Case 2)	Nj
3B	5.09E-06	5.09E-06	0%	Maintenance	4	3	0
4A	1.76E-07	1.76E-07	0%	Maintenance	4	3	0
4B	2.75E-06	2.75E-06	0%	Maintenance	4	3	0
5	2.28E-06	2.28E-06	0%	Maintenance	4	3	0
6	7.44E-06	7.44E-06	0%	Maintenance	4	3	0
10	6.12E-05	7.76E-05	27%	Standby	4	3	1

Analysis Result

Nuclear Safety First, Last and Always

newpower, newstandar

Case 1

- Convenience of analysis
 - Same Denominator(NL) for all POS
 - Consistent fire frequency distribution for all compartments(not including maintenanc e equipment)
- Slightly lowered value of fire frequency

Case 2

- More Conservative value of fire frequency
- Inconvenience of analysis
 - Different Denominator(NL) for each POS
 - Variable fire frequency distribution for all compartments(not including maintenanc e equipment)

Summary

newpower, newstandar

Calculation of fire frequency for LPSD is suggested

- Adopt POS classification
- Consider 2 cases depending on including de-energized equipment for calculation
 - > Opposite characteristics in terms of convenience and conservatism

Nuclear Safety First, Last and Always

newpower, newstandard

Thank you

Q&A

12