

Software Test-based Reliability Assessment Framework for Nuclear Power Plant Safety-critical Software

Probabilistic Safety Assessment and Management (PSAM 14), September 17-21, 2018, Los Angeles, CA.

Sang Hun LEE¹, Seung Jun LEE², Jinkyun Park³, Eun-chan LEE⁴, Hyun Gook KANG^{1*}

¹ Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), Troy, NY, USA

² School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, ROK

³ Integrated Safety Assessment Division, Korea Atomic Energy Research Institute (KAERI), ROK

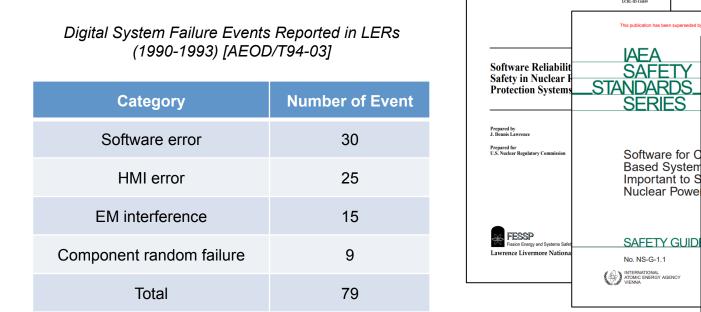
⁴ Korea Hydro & Nuclear Power (KHNP) Co., Ltd., ROK

Contents

Introduction

- Research background/scope
- Previous research on QSRMs

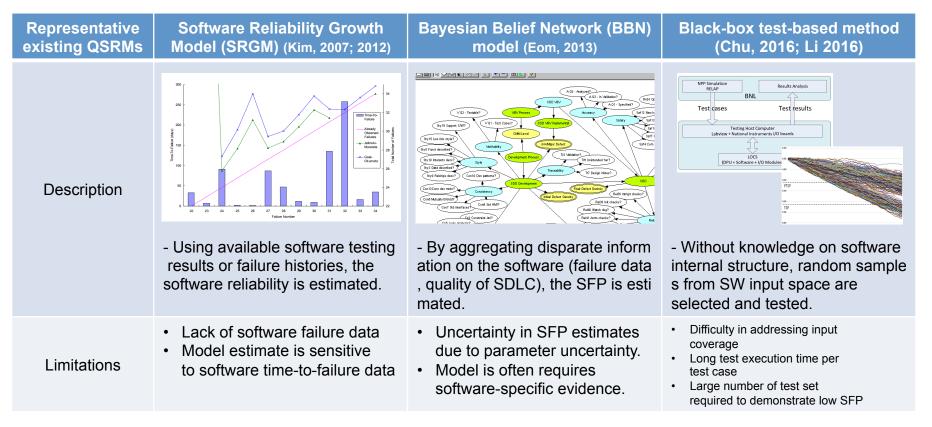
Proposed Framework:


<Simulation-based NPP safety SW testing & reliability quantification>

- Safety-critical PLC SW Test-bed development
- Operational-profile-based SW test case generation
- Application to KNICS IDiPS-RPS BP trip logic software
 - Development of SW test case for BP trip signal generation
 - Test procedure and results of BP trip logic using SW test-bed
 - Software failure probability quantification from BP trip logic test results
- Conclusion
- Reference

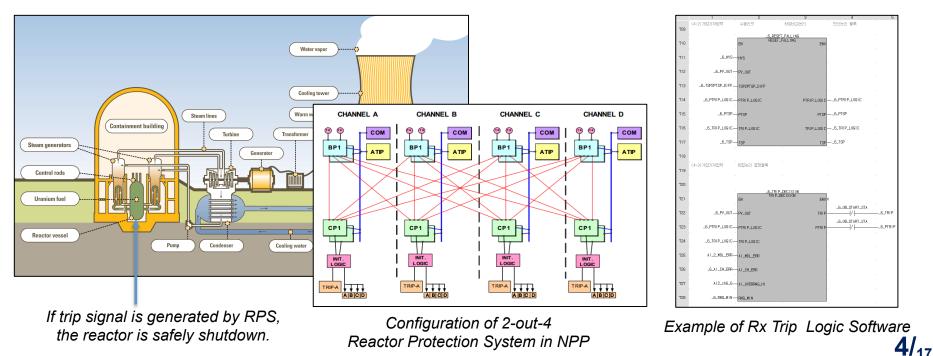
Research Background

- Reliability assessment of safety-critical software used in NPP has been one of the important issues in PRA of digital I&C system.
 - The failure of the safety-critical software failure can induce the common cause failure (CCF) of processor modules in NPP digital I&C system.
 - In order to model the software failure in the PRA of digitalized NPP, the quantifica tion/verification of a very low software failure probability is crucial.

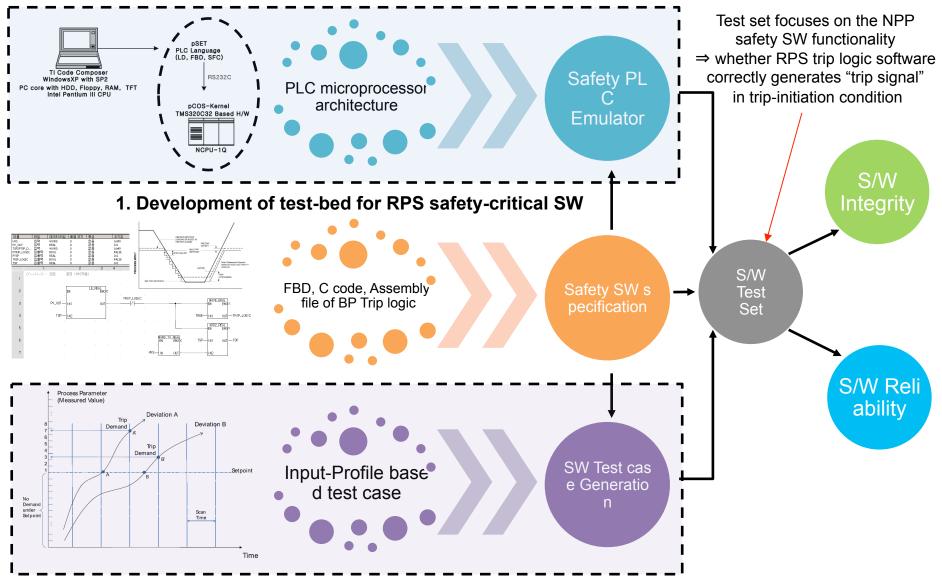

Standards on the Safety issues related to Software used in Digitalized Nuclear Power Plant

Previous Research on QSRMs

- Due to limitations of available QSRMs in nuclear field, existing approaches are inappropriate to quantify/verify very low SFP (~10⁻⁵ failure/demand).
 - Therefore, a practical SW testing framework is needed in order to effectively ass ure low NPP safety SW reliability and prove error-freeness of SW functionality.

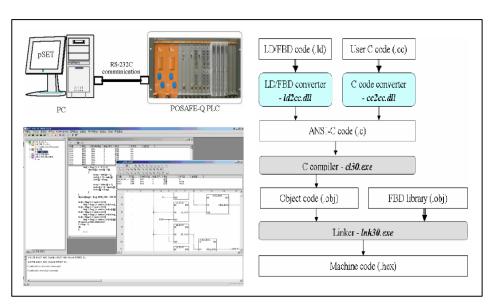

Representative examples of existing quantitative software reliability methods (QSRMs)

Research Scope



- Software failure probability of NPP safety SW is defined as:
 - probability of failure on demand (here, demand = plant condition that requires act uation of safety systems) - e.g. a failure to generate a Rx trip signal.
- The scope of this study is focused on:
 - 1) develop a software testing framework for NPP safety software failures to gener ate its dedicated safety signal.
 - 2) quantify the SFP based on software test results using simulation-based SW te st-bed in consideration of the operational profile of SW test cases.

Overall Framework



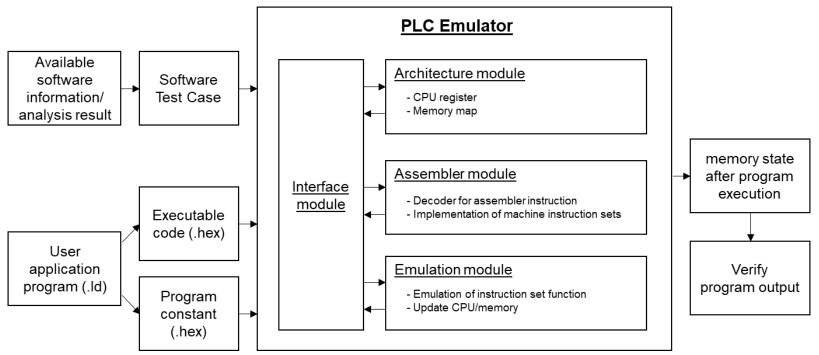
2. Development of SW test cases (input/internal) for RPS safety-critical SW

Safety-critical PLC SW Test-bed development

- PLC widely used in NPP control system consists of various modules, such as process or, communication, and I/O modules.
 - Especially, the processor module uses a programmable memory to store program instructions and to implement functions as a binary form.
- PLC executes a compiled machine code (from FBD/LD and C code), thus test-bed ca n be developed by capturing PLC microprocessor architecture, such as:
 - CPU registers, Memory
 - Machine instructions, etc.

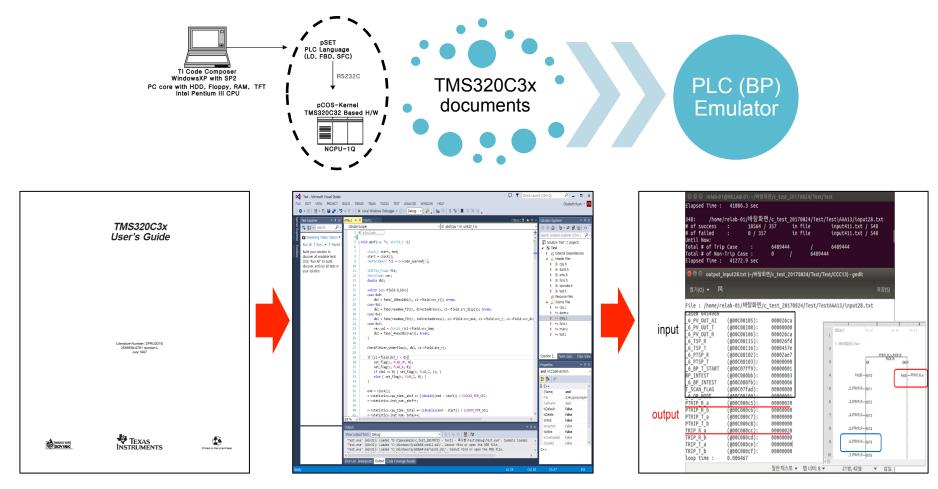
Software engineering tool of NPP safety PLC and its co mpile procedure for safety programs

united in the second se	상훈해석_20170609₩Release₩ccodes₩				↔ – □
	(E) 찾기(S) 보기(V) 인코딩(N)				
े 📑 🗐 ।	e 🗟 🐚 🚔 X 🖻 🖻 🤉 C	🛗 🏂 🔍 🔍	🖫 🖼 🎫 🏽 🎼	🥃 💹 🕗 🚞 💌 🕨	
🖶 bpk_trij	p_logica.lst 🗵				
28	23				
29	24			bpk_trip_lo	
30	25	;***	*********	*****	****
31	26		UNCTION NAM	ME: _bpk_trip_	logica
32	27	;*			
33	28	;*	Architectu		
34	29	;*			Parameter Conventio
35	30	;*	Function U		f1,r1,r2,r3,ar0,ar1
36	31	;*		st,rs,	
37	32	;*	Regs Saved		5,ar6,ar7
38	33	;*	Stack Fram		ct (No Frame Pointer
39	34	;*	Total Fram		+ 0 Parm + 0 Auto
40	35	,			*****
41 42	36 00000000	_bp_	k_trip_1		
42	37 00000000 08 38 00000001 50		ldp ldiu	@CL2,DP	; 373
43	39 00000002 08		ldp	<pre>@CL2, ar0 @CL1, DP</pre>	; [3/3]
44	40 00000003 01		push	ar4	
45	41 00000004 50		ldiu	QCL1, ar4	; 373
47	42 00000005 08		ldp	@CL3, DP	, [575]
48	43 00000006 01		push	ar5	
49	44 00000007 50		ldiu	QCL3, ar2	; 378
50	45 00000008 01		push	ar6	, 10/01
51	46 00000009 08		ldp	@CL4,DP	
52	47 0000000a 01		push	ar7	
53	48 000000b 50	290025-	ldiu	@CL4,ar1	; 378
54	49 0000000c 50	40c000	ldiu	*ar0,r0	; [373]
55	50 000000d 08	700000-	ldp	@CL5, DP	
56	51 0000000e 50	7a0001	ldiu	1,re	; 378
	E2 000000€ E0	200026	1.44	ACT 5 amo	. 10701


Example of compiled BP software from LD/FBD

Reliabilitu

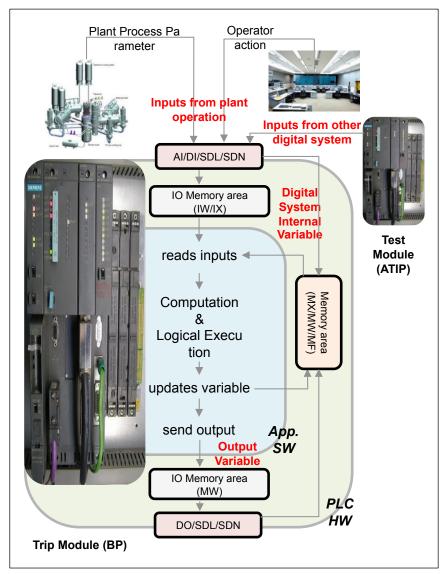
Safety-critical PLC SW Test-bed development


- Components of safety PLC SW test-bed [Lee et al., 2018]:
 - 1) Architecture module: CPU registers, Memory map (16Mbyte; 0x000000 ~ 0x00FFFFF)
 - 2) Assembler module: Instruction sets of PLC microprocessor (113 instructions)
 - 3) Emulation module: Emulation of operation of PLC microprocessor instruction sets
 - 4) Interface module: Interface between each module
 - Instruction set decoded from Assembler module is transferred to Emulation module to conduct its spec ific operation.
 - Result of instruction set execution by Emulation module is updated to the CPU/memory emulated in Ar chitecture module.

An overview of the simulation-based test-bed for safety-critical PLC software testing^b

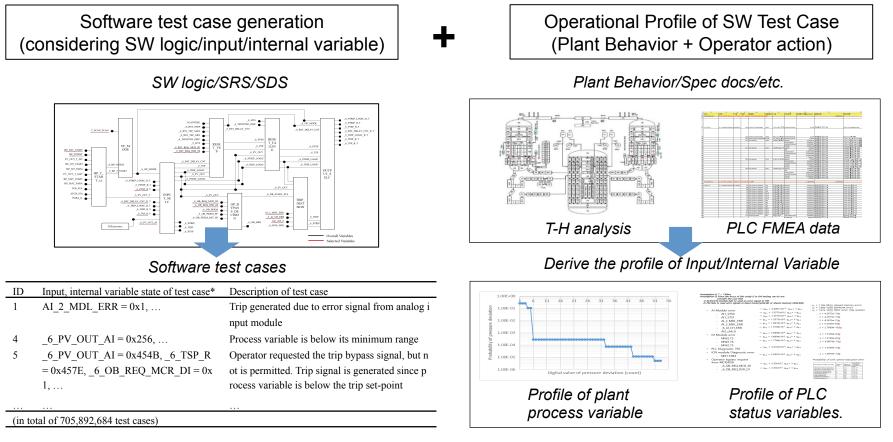
Safety-critical PLC SW Test-bed development

KNICS IDiPS-RPS BP processor module – TI C32 DSP CPU (TMS320C3x)


Target microprocessor assembly (TMS320C3x)

Developed BP Software Test-bed (emulate the behavior of the microprocessor given SW program) Check the final state of PLC microprocessor after SW program execution

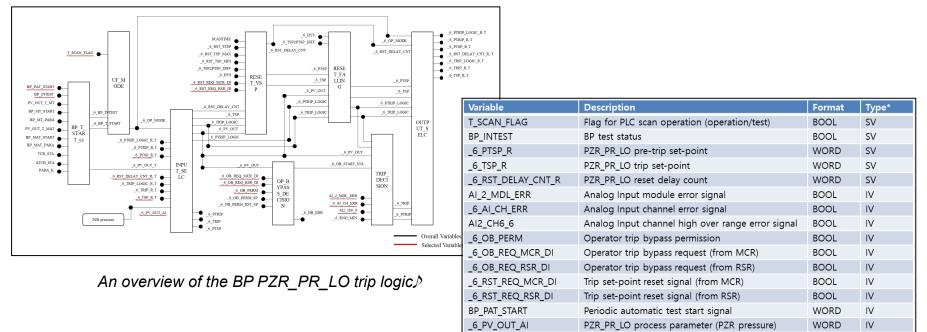
Operational-profile based SW Test Case Generation



- PLC operation is characterized b y its cyclic operation mode:
 - CPU checks
 - I/O checks
 - Input scan
 - copy physical input values into it s memory
 - Logic execution
 - executes a program based on a memory map
 - Output scan
 - updates output
- By deriving the combination of p ossible SW input/internal space, it is possible to test a software by verifying the output for each test case (sets of input/internal varia bles states).

Operational-profile based SW Test Case Generation

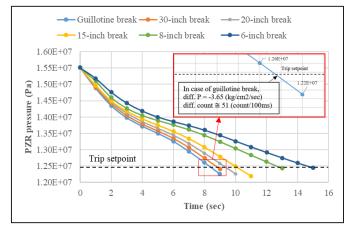
 \rightarrow Based on SW test result, software failure probability is estimated as:


- $\widehat{\theta}_t$: estimated software failure probability,
- $\widehat{\theta_i}$: software failure probability for test case *i*,
- p_i : operational (explicit) profile of each test case

- IDiPS-RPS BP Trip Logic SW Test Case Generation
 - <u>Target Trip logic</u>: PZR_PR_LO Trip (Manual-Reset Variable Trip-setpoint)
 - <u>Target Case</u>: Trip-initiation condition

(test input/internal variables' states that will generate Rx trip signal)

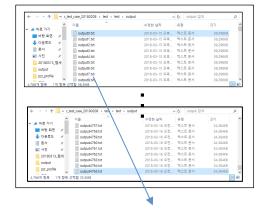
• **<u>Target scenario</u>**: Double-ended guillotine break accident (30 inch x 2)



*SV: State (or internal) variable; IV: Input Variable.

Summarized variables for PZR_PR_LO (_6_) trip logic test case generation.

- IDiPS-RPS BP Trip Logic SW Test Case Generation
 - Number of test sets: 705,892,684 cases
 - Pressurizer pressure: 17738 ~ 22503 (TSP: 17790, full power 15.5MPa: 22503)
 - D_{max} (maximum *i*-th digital value below trip set-point) at Double-ended guillotine break = 53

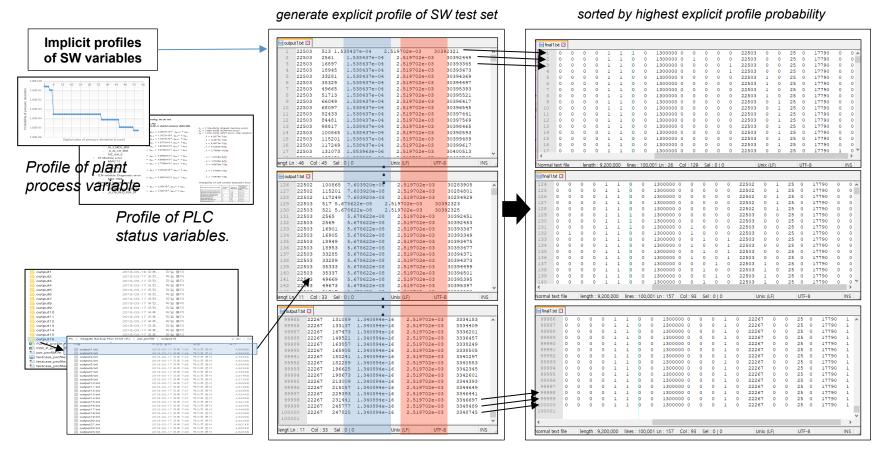


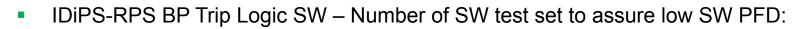
Obtained profile of PZR pressure for various LOCA groups from T-H analysis of target NPP using MARS code.

D_{max} of the PZR pressure (_6_PV_OUT_AI) for various LOCA categories

ID	Effective di ameter (in.)	D _{max} (count)	Frequency	Fraction
1	0.50	1	1.46E-03	7.78E-01
2	1.625	4	4.02E-04	2.14E-01
3	3.0	6	1.42E-05	7.54E-03
4	7.0	33	1.37E-06	7.29E-04
5	14.0	43	1.71E-07	9.10E-05
6	31.0	51	2.90E-09	1.54E-05
	30.0 * 2	53		

Generated test set files



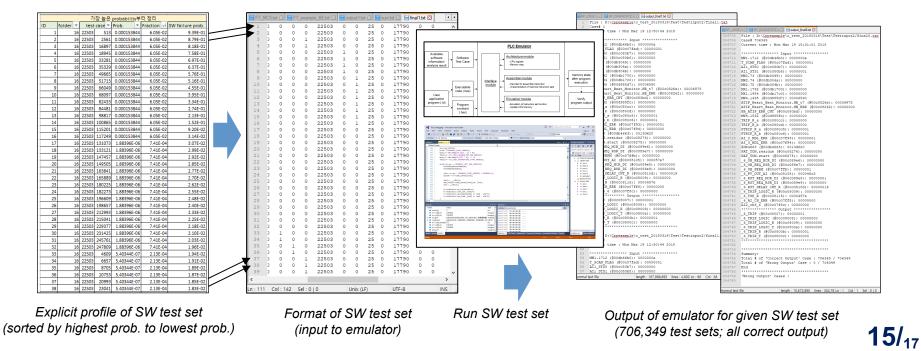

final1.t		1																				_
1	0	0	0	0	1	1	1	0	1300000		0	0	0	0	22503	0	0	25	0	17790	0	0 /
2	0	0	0	0	1	1	0	0	1300000	0	1	0	0	0	22503	0	0	25	0	17790	0	0
3	0	0	0	0	1	1	0	0	1300000	0	0	0	0	1	22503	0	0	25	0	17790	0	0
4	0	0	0	0	1	1	0	0	1300000	0	0	0	0	1	22503	0	0	25	0	17790	0	0
5	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	1	0	25	0	17790	0	0
6	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	1	0	25	0	17790	0	0
7	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	1	0	25	0	17790	0	0
8	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	1	0	25	0	17790	0	0
9	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
10	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
11	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
12	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
13	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
14	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
15	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
16	0	0	0	0	1	1	0	0	1300000	0	0	0	0	0	22503	0	1	25	0	17790	0	0
17	0	0	ō	0	1	1	0	ō	1300000		0	ō	0	ō	22503	0	0	25	ō	17790	i	0
																						>

Example of generated test set file for BP PZR_PR_LO trip logic

- IDiPS-RPS BP Trip Logic SW Derive Profile of Test Case
 - **<u>Target logic</u>**: KNICS RPS BP trip logic pressurizer-pressure-low trip (PZR_PR_LO_Trip)
 - <u>Target scenario</u>: NPP full power operation
 - <u>Assumption</u>: No test module(ATIP) heartbeat error PLC error (AI/DI/ICN/diagnostics error) are considered.
 - **<u>Pressurizer pressure</u>**: 17738 ~ 22503 (TSP: 17790, full power 15.5MPa: 22503)

- Software failure probability after the success of the first test:
- Based on the derived explicit profile for the SW test set, the number of test sets to assure low S W PFD can be derived quantitatively.
- A low software failure probability can be verified with minimum effort by running the SW test set having highest probability to lowest probability.

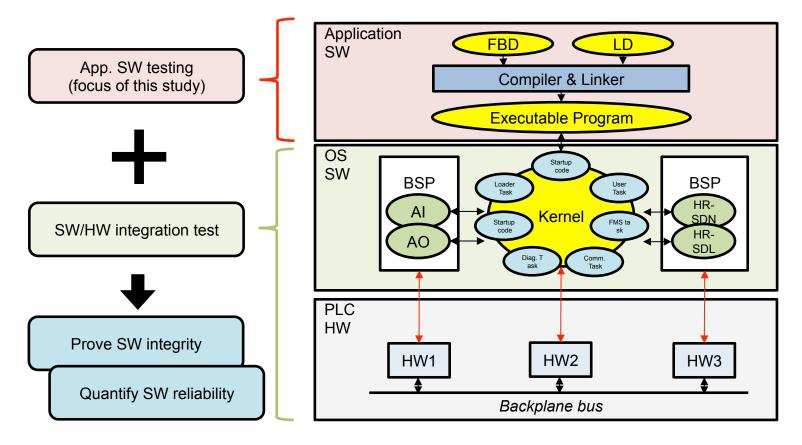
From Highest Probability	From Highest Probability		
ID folder v test case v Prob. v Fraction v SW failure prob.	ID folder T test case T Prob. T Fraction + SW failure prob.	From Highest Probability	
1 16 22503 513 1.54E-04 6.05E-02 9.39E-01	37 16 22503 20993 5.40E-07 2.13E-04 1.85E-02	ID folder v test case v Prob. v Fraction v SW failure prob.	
2 16 22503 2561 1.54E-04 6.05E-02 8.79E-01	38 16 22503 23041 5.40E-07 2.13E-04 1.83E-02	75402 16 22334 68097 6.16E-11 2.42E-08 1.00E-04	
3 16 22503 16897 1.54E-04 6.05E-02 8.18E-01	39 16 22503 25089 5.40E-07 2.13E-04 1.81E-02	75403 16 22334 82433 6.16E-11 2.42E-08 1.00E-04	
4 16 22503 18945 1.54E-04 6.05E-02 7.58E-01	40 16 22503 27137 5.40E-07 2.13E-04 1.79E-02	75403 16 22334 82433 0.10E-11 2.42E-08 1.00E-04	
5 16 22503 33281 1.54E-04 6.05E-02 6.97E-01	41 16 22503 37377 5.40E-07 2.13E-04 1.77E-02		
6 16 22503 35329 1.54E-04 6.05E-02 6.37E-01	42 16 22503 39425 5.40E-07 2.13E-04 1.74E-02	75405 16 22334 98817 6.16E-11 2.42E-08 1.00E-04	
7 16 22503 49665 1.54E-04 6.05E-02 5.76E-01	43 16 22503 41473 5.40E-07 2.13E-04 1.72E-02		SW PFD ~ 10⁻⁴
8 16 22503 51713 1.54E-04 6.05E-02 5.16E-01	44 16 22503 43521 5.40E-07 2.13E-04 1.70E-02	75407 16 22334 115201 6.16E-11 2.42E-08 9.99E-05	
9 16 22503 66049 1.54E-04 6.05E-02 4.55E-01	45 16 22503 53761 5.40E-07 2.13E-04 1.68E-02	75408 16 22334 117249 6.16E-11 2.42E-08 9.99E-05	
10 16 22503 68097 1.54E-04 6.05E-02 3.95E-01	46 16 22503 55809 5.40E-07 2.13E-04 1.66E-02		
11 16 22503 82433 1.54E-04 6.05E-02 3.34E-01	47 16 22503 57857 5.40E-07 2.13E-04 1.64E-02 48 16 22503 59905 5.40E-07 2.13E-04 1.62E-02	From Highest Probabili	tv
12 16 22503 84481 1.54E-04 6.05E-02 2.74E-01 13 16 22503 98817 1.54E-04 6.05E-02 2.13E-01	48 16 22503 59905 5.40E-07 2.13E-04 1.62E-02 49 16 22503 70145 5.40E-07 2.13E-04 1.59E-02	ID folder v test case v Prob. v	Fraction + SW failure prob.
15 16 22505 9881/ 1.54E-04 6.05E-02 2.15E-01 14 16 22503 100865 1.54E-04 6.05E-02 1.52E-01	50 16 22503 72193 5.40E-07 2.13E-04 1.57E-02		
14 10 22503 100805 1.54E-04 0.05E-02 1.52E-01 15 16 22503 115201 1.54E-04 6.05E-02 9.20E-02	51 16 22503 74241 5.40E-07 2.13E-04 1.55E-02	246551 10 20474 25089 2.16E-13	
16 16 22503 117249 1.54E-04 6.05E-02 3.14E-02	52 16 22503 76289 5.40E-07 2.13E-04 1.53E-02	246552 10 20474 27137 2.16E-13	8.52E-11 1.00E-05
10 10 110 110 110 110 110 110 110 110 1	53 16 22503 86529 5.40E-07 2.13E-04 1.51E-02	246553 10 20474 37377 2.16E-13	8.52E-11 1.00E-05
18 16 22503 133121 1.88E-06 7.41E-04 2.99E-02	54 16 22503 88577 5.40E-07 2.13E-04 1.49E-02		8.52E-11 9.99E-06
19 16 22503 147457 1.88E-06 7.41E-04 2.92E-02	55 16 22503 90625 5.40E-07 2.13E-04 1.47E-02	SWPFD ~ 10 ⁻⁵ 246554 10 20474 39425 2.16E-13 246555 10 20474 41473 2.16E-13	
20 16 22503 149505 1.88E-06 7.41E-04 2.85E-02	56 16 22503 92673 5.40E-07 2.13E-04 1.45E-02		
21 16 22503 163841 1.88E-06 7.41E-04 2.77E-02	57 16 22503 102913 5.40E-07 2.13E-04 1.42E-02	246556 10 20474 43521 2.16E-13	
22 16 22503 165889 1.88E-06 7.41E-04 2.70E-02	58 16 22503 104961 5.40E-07 2.13E-04 1.40E-02	246557 10 20474 53761 2.16E-13	8.52E-11 9.99E-06
23 16 22503 180225 1.88E-06 7.41E-04 2.62E-02	59 16 22503 107009 5.40E-07 2.13E-04 1.38E-02		
24 16 22503 182273 1.88E-06 7.41E-04 2.55E-02	60 16 22503 109057 5.40E-07 2.13E-04 1.36E-02	From Highest Probability	
25 16 22503 196609 1.88E-06 7.41E-04 2.48E-02	61 16 22503 119297 5.40E-07 2.13E-04 1.34E-02	ID folder 🔻 test case 💌 Prob. 💌 Fraction 🚽 SW failure prob.	
26 16 22503 198657 1.88E-06 7.41E-04 2.40E-02	62 16 22503 121345 5.40E-07 2.13E-04 1.32E-02	706346 2 18115 34305 9.60E-15 3.78E-12 1.00E-06	
27 16 22503 212993 1.88E-06 7.41E-04 2.33E-02	63 16 22503 123393 5.40E-07 2.13E-04 1.30E-02 64 16 22503 125441 5.40E-07 2.13E-04 1.28E-02	706347 2 18115 35331 9.60E-15 3.78E-12 1.00E-06	
28 16 22503 215041 1.88E-06 7.41E-04 2.25E-02			
29 16 22503 229377 1.88E-06 7.41E-04 2.18E-02 30 16 22503 231425 1.88E-06 7.41E-04 2.10E-02	65 1 17790 1 3.96E-07 1.56E-04 1.26E-02 66 1 17790 2049 3.96E-07 1.56E-04 1.24E-02	706348 2 18115 36353 9.60E-15 3.78E-12 1.00E-06	
30 16 22503 231425 1.88E-06 7.41E-04 2.10E-02 31 16 22503 245761 1.88E-06 7.41E-04 2.03E-02	66 1 1/90 2049 5.96E-07 1.56E-04 1.24E-02 67 1 17790 16385 3.96E-07 1.56E-04 1.23E-02	706349 2 18115 49667 9.60E-15 3.78E-12 9.99E-07	SW PFD ~ 10 ⁻⁶
31 10 22503 245701 1.88E-06 7.41E-04 2.05E-02 32 16 22503 247809 1.88E-06 7.41E-04 1.96E-02	68 1 17790 18433 3.96E-07 1.56E-04 1.21E-02 68 1 17790 18433 3.96E-07 1.56E-04 1.21E-02	706350 2 18115 50689 9.60E-15 3.78E-12 9.99E-07	
33 16 22503 247809 1.88E-06 7.41E-04 1.96E-02 33 16 22503 4609 5.40E-07 2.13E-04 1.94E-02	69 1 17790 18455 5.90E-07 1.50E-04 1.21E-02 69 1 17790 32769 3.96E-07 1.56E-04 1.20E-02	706351 2 18115 51715 9.60E-15 3.78E-12 9.99E-07	
34 16 22503 6657 5.40E-07 2.13E-04 1.94E-02 34 16 22503 6657 5.40E-07 2.13E-04 1.91E-02	70 1 17790 32789 3.96E-07 1.56E-04 1.20E-02 1 17790 34817 3.96E-07 1.56E-04 1.18E-02	706352 2 18115 52737 9.60E-15 3.78E-12 9.99E-07	
35 16 22503 8705 5.40E-07 2.13E-04 1.89E-02	71 1 17790 49153 3.96E-07 1.56E-04 1.17E-02	706352 2 18115 66051 9.60E-15 3.78E-12 9.99E-07	
36 16 22503 10753 5.40E-07 2.13E-04 1.87E-02	72 1 17790 51201 3.96E-07 1.56E-04 1.15E-02	2 10113 00031 5.00E-13 5.70E-12 9.99E-07	
37 16 22503 20993 5.40E-07 2.13E-04 1.85E-02	73 1 17790 65537 3.96E-07 1.56E-04 1.14E-02		
38 16 22503 23041 5.40E-07 2.13E-04 1.83E-02	74 1 17790 67585 3.96E-07 1.56E-04 1.12E-02		


Summarized explicit profile of SW test set for PZR_PR_LO trip logic (sorted by highest prob. to lowest prob.)

Number of SW test set for some SW failure probability (SIL-4 level: $10^{-4} \sim 10^{-6}$)

14/₁₇

Application - KNICS-RPS BP Trip Logic SW


- IDiPS-RPS BP Trip Logic SW Test Result
 - In previous section, we derived the number of test set to achieve 10⁻⁴-10⁻⁶ SW pfd.
 - Number of test set to achieve SW pfd ~ 10^{-4} = 75,406 test sets
 - Number of test set to achieve SW pfd ~ 10⁻⁵ = 246,554 test sets
 - Number of test set to achieve SW pfd ~ 10⁻⁶ = 706,349 test sets
 - By testing the test sets having high profile and confirming whether it generates correct SW out put, we can assure low SW PFD with minimum effort compared to previous studies:
 - 1) Functionality of the NPP safety SW can be proven without uncertainties compared to conventional bla ck-box which uses test cases randomly sampled from operational profile, and
 - 2) Software testing time per test case can be effectively reduced by using simulation-based test-bed.

Conclusion & Future Works

- In this study, a software test framework for a QSRM of NPP SW utilizing simulation-b ased software test-bed with operational-profile-based test cases was proposed.
- The test results for application software of NPP safety-critical system combined with t he SW/HW integration test result can be used for software reliability quantification.

Hierarchy structure of SW/HW components of typical PLC used in NPP♪

Acknowledgement

 This work was supported by the project of 'Evaluation of human error proba bilities and safety software reliabilities in digital environment (L16S092000),' which was funded by the Central Research Institute (CRI) of the Korea Hyd ro and Nuclear Power (KHNP) company.

Thank you for your attention Q&A