

Dynamic sequential decision making for missions and maintenance scheduling for a deteriorating vehicle

E. Robert, C. Bérenguer, K. Bouvard, R. Lesobre, H. Tedie

September 17th, 2018

Agenda

Industrial context

Research context

Problem statement

•Contribution

• Decision criterion

Maintenance model

Resolution

Context

Performance analysis

Numerical •Rescheduling flexibility

• Dynamic sequential method analysis • Perspectives

• Dynamic sequential method description

Conclusion •Per

AGENDA

September 17th, 2018

Industrial context

Why dynamically scheduling both missions and maintenance operations for a truck?

Ensure the vehicle availability

Fit to the vehicle usage

Adapt to the missions constraints

Adapt to disruptions

Avoid unplanned stops

Schedule at best maintenance time slots

Research context

Rescheduling environments

Rescheduling strategies

Rescheduling methods

September 17th, 2018

Problem statement

Problem

September 17th, 2018

$$\max_{\pi} G(\pi) \ s.t \ \forall k \in [[1; N_b]], \mathbb{P}_f(k) \le \mathbb{P}_{max}$$

Operating incomes Schedule Number of blocks composing π Probability to have one failure in block kMaximum failure probability

Contributions

- Propose a predictive-reactive approach to jointly schedule missions and maintenance operations
 - Generation of a schedule evolving over time according to monitoring information and disruptions
 - Maintenance model based on the vehicle deterioration evolution
- Implement the rescheduling strategy based on a genetic algorithm
 - Optimization criterion
 - Sequential rescheduling according to the event
- > Comparison between a static scheduling method and the dynamic one
 - Performance analysis
 - Effect of the rescheduling

Decision criterion

> Dynamic scheduling decision criterion: $C(\pi) = G_m - C_d - C_m$

Gains earned when the missions are completed

$$\boldsymbol{G_m} = \sum_{i=1}^n g_m(i)$$

 $g_m(i)$: gain generated by the mission i

September 17th, 2018

Maintenance cost $C_m = \sum_{k=1}^{N_b} \left(C_0 + C_f \sum_{k=1}^{N_f(b)} \mathbb{P}_f(b,k) \right)$

 N_b : number of blocks C_0 : preventive maintenance cost C_f : corrective maintenance cost $N_f(b)$: maximum number of considered failures for block b $\mathbb{P}_f(b,k)$: probability to exceed the failure threshold L for the k^{th} time in block b

Maintenance model

 \blacktriangleright Deterioration-threshold failure model \rightarrow estimate the maintenance costs associated with failures

Equivalent Gamma process with the remaining missions \rightarrow estimate the probability to exceed the threshold $L - d_1$

Dynamic sequential method

Based on a genetic algorithm

Dynamic sequential method

Numerical example: framework

Mission \rightarrow ($t_m, \alpha_m, \beta_m, \mathbb{P}_m, g_m, d_m$)

 $\forall m, g_m = 5000$

18 missions \rightarrow 6 available at T_0

Parameters	Values
C _{ud} : unitary penalty cost for delay	50
<i>C</i> ₀ : preventive maintenance cost	1000
d_p : preventive maintenance duration	2
<i>C_f</i> :corrective maintenance cost	3000
d_c : corrective maintenance duration	4
L: failure threshold	100%
\mathbb{P}_{max} : maximum failure probability	0.1

- t_m : duration
- (α_m, β_m) : deterioration process parameters
- \mathbb{P}_m : failure probability
- g_m : gain
- d_m : starting deadline

Scenario

- New missions: 4 missions added after missions 1,3,5
- Deterioration measures: after missions 1,2,5,6,8,10,12,13,14,17,18
- Monte-Carlo simulations
- **Comparison** dynamic sequential method VS "static" scheduling method

September 17th, 2018

Performance analysis

Method	Dynamic sequential	Static
Operating incomes	76370	70180
Number of blocks	9	13
Computation time	50s	10s

$$n_t = n_f + n_d + \underbrace{n_m}_{= 1} + \underbrace{n_{md}}_{= 2}$$

Monitoring information \rightarrow Rescheduling \rightarrow Benefits generated by the dynamic sequential $\sim 8, 8\%$

September 17th, 2018

Rescheduling flexibility

When vehicle health state available \rightarrow Rescheduling limit condition C_{lim}

Rescheduling effect in the operating incomes through the delay costs to limit disruptions

Conclusion

- Predictive-reactive rescheduling strategy to schedule missions and maintenance operations
 - Schedule evolving over time according to available monitoring information
 - Maintenance model based on deterioration-threshold failure model
- Decision-making process
 - Optimization criterion \rightarrow balance between the gains, the delay costs and the maintenance costs
- Comparison dynamic sequential and "static" methods
 - Increase of the operating incomes $\sim 8.8\%$ at the expense of the computation time
 - Better fit to the vehicle health state
 - Rescheduling limit condition \rightarrow avoid too many rescheduling

The cost necessary to retrieve the monitoring information is not considered

Next step: Develop a similar method for a fleet of vehicles

Thank you for your attention.

Questions ?

September 17th, 2018