Application of Resilience Metrics to Nuclear Accident Consequence Assessment

Kampanart SILVA (Ph.D.)* Senior Nuclear Scientist, Nuclear R&D Division

Wasin Vechgama Nuclear Engineer, Nuclear R&D Division

สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) Thailand Institute of Nuclear Technology (Public Organization)

Fukushima Daiichi NPP Accident

Nuclear Accident Consequence Index

NACI

Whole picture of accident consequences at a glance

1 https://
www.japantimes.co.jp/
2 https://bmjopen.bmj.com/
3 http://www.reconstruction.go.jp/
4 https://www.npr.org/

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

K. Silva, K. Okamoto. "A simple assessment scheme for severe accident consequences using release parameters", Nuclear Engineering and Design, 305, pp. 688-696, (2016).

Resilience

Ability of an entity to bounce back

Resilience metrics

Used to assess resilience of the system

Original state \rightarrow disrupted state \rightarrow recovered state

NACI 🗇 Resilience Metrics

Capture changes of accident consequences with time

Objective

"Apply resilience metrics to nuclear accident consequence assessment"

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

D. Henry, J. E. Ramirez-Marquez. "Generic metrics and quantitative approaches for system resilience as a function of time", Reliability Engineering and System Safety, 99, pp. 114-122, (2012).

Figures-of-Merit and Resilience Actions

Figures-of-merit (F(t))	Resilience actions
Number of people being exposed to radiation dose over prescribed dose limit	Relocation, decontamination
Number of relocated people	Decontamination
Size of relocated area	Decontamination
Size of contaminated area	Decontamination

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

Calculation Conditions

Items	Conditions
Reactor type	1,100 MWe BWR-5
Release location	Headquarters of Thailand Institute of
	Nuclear Technology
Hypothetical accident	Long-term station blackout
Coverage of meteorological, population,	Within the radius of 200 km from the
land use and economic data	release point
Meteorological data type	Hourly wind speed, wind direction,
	precipitation, weather stability of 2014
Meteorological sampling method	Random sampling (100 samples)
Decontamination methods	Based on methods used in Chernobyl
	and 1FNPS accidents
Dose limit	1 mSv/year
Relocation initiation dose	20 mSv/year
Relocation lifting dose	20 mSv/year

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

Similarity among Four Figures-of-Merit

Relocation (People) **Radiation exposure**
 Radiation exposure resilience index

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Relocated people resilience index 1.1 1.0 0.9 Average -Average 0.8 -5th — 5th 0.7 50th 50th 0.6 90th -90th 0.5 95th 95th 0.4 0 50 10 20 30 40 50 0 10 20 30 40 Year Year **Relocation** (land) Land contamination 1.1 1.1 Land contamination resilience index Relocaed area resilience index 1.0 1.0 0.9 0.9 Average -Average 0.8 0.8 -5th —5th 0.7 0.7 50th -50th 0.6 0.6 90th -90th 0.5 0.5 -95th 95th 0.4 0.4 0 10 20 30 40 50 0 10 20 30 40 50 Year Year

- Sharp decrease

Large difference
 among percentile
 values – effects of
 weather conditions

- None of them return to original state

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

Radiation Exposure VS Land Contamination

- Criterion for both figures-of-merit is 1 mSv/year
- Sharper decrease in radiation at high percentile values
- Bias in population distribution (large cities 50-80 km from release point)

Land Contamination VS Relocation

- Land contamination > relocation
- Land contamination: 1 mSv/year
- Relocation: 20 mSv/year (both initiating and lifting doses)

Relocation – People VS Land

- Criterion for both figures-of-merit is 20 mSv/year
- Sharper decrease in people at high percentile values
- Bias in population distribution (large cities 50-80 km from release point)

Conclusions

Resilience metrics were applied to nuclear accident consequence assessment.

- Time-dependent characteristics of accident consequences were revealed.
- None of resilience indices returned to the stable original state.
- Bias in population distribution significantly affects resilience indices related to people → need to have separate resilience indices for people and area.
- Extreme weather conditions can lead to significant reduction of resilience → need to apply various weather conditions.
- Costs attributed to relocation are much lower than decontamination cost ← lower dose criterion for decontamination (1 mSv/year), comparing to the dose criterion for relocation (20 mSv/year).

Note that **protective/mitigative countermeasures** can vary and may affect the resilience indices.

Further Study

• Explore the changes of figures-of-merit at different conditions.

Thailand Institute of Nuclear Technology (Public Organization) 9/9 moo 7, Sai Moon, Ongkharak, Nakorn Nayok 26120 Tel. : +66 3739 2901 (to 6) Fax : +66 3739 2913 www.tint.or.th

สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) Thailand Institute of Nuclear Technology (Public Organization)

Kampanart SILVA kampanarts@tint.or.th

Wasin Vechgama wasin@tint.or.th