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Introduction
Pitting corrosion is a primary and one of the most severe failure 
mechanism of oil and gas pipelines because of the high rate at 
which pits can grow [Velázquez, Caleyo, Valor, & Hallen, 2009].
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Motivation

 To decrease the total cost due to internal pitting corrosion by 
finding an optimal proactive maintenance policy

Annual cost of corrosion in the infrastructure 
category in the USA. [Koch et al., 2002]



Motivation

 To decrease the total cost due to internal pitting corrosion by 
finding an optimal proactive maintenance policy
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Reliability

Failure costs (Downtime, 
environment, etc.)

Reliability improvement 
costs (Repair, inspection, 
etc. )Total costs 

Low reliability 
leads to high failure 
cost

High reliability leads 
to high maintenance  
cost

Optimal reliability level 
to minimize the total cost

In order to calculate the 
reliability level of the 

pipeline, a proper
degradation model is 

required.
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Assumptions

https://constructionreviewonline.com/2014/12/ethiopia-receives-us1-
4bn-petro-pipeline-project-proposal/

iecetech.org

• ILI or pigging data (infrequent, discrete and low quality information) for most 
segments of the pipeline are available. 
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Assumptions
• ILI or pigging data (infrequent, discrete and low quality information) for most 

segments of the pipeline are available. 
• Online inspection (OLI) data (continuous, discrete, and high quality information) 

and human inspection (infrequent, discrete, and high quality information) for 
some pipeline segments are available. 

• The pipeline is aged and piggable (with some non-piggable segments).
• Pits are not interacting with each other. 
• All pits are under similar operational condition at each time.
• Details about the sensor layout, the NDT equipment and the methods (coverage 
area, probability of detection and measurement errors, etc.) are known.
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[Wan et al., 2011]



Literature review
• On data fusion algorithms
• On pitting corrosion degradation models
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Literature review on data fusion algorithms 
on pipeline degradation
 Maes et al., (2009) fused multiple ILIs data in a hierarchical Bayesian 

framework to predict defect growth. They did not consider the variation in 
pits’ initiation times.

 Zhang and Zhou (2013) considered corrosion initiation times within the 
previous work. Both of these works just used the ILI data.

 Rabiei et al. (2016) used augmented particle filtering to fuse two types of
sensor data (i.e., acoustic emission and modulus of elasticity) from a
damage in a metallic alloy under fatigue to estimate the degradation level.

 Gaps: None of these works fused ILI and online sensor data from
different objects (pits). The similarity between objects should be
estimated which requires a physics-based degradation model.
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Literature review on pitting corrosion 
degradation models was used to identify six 
requirements for a proper model

Hierarchical levels of uncertainty in 
degrading systems (Maes et al, 2009)

• Characteristic I: the corrosion rate of a deeper
pit is greater than the corrosion rate of a
shallower one (Rivas et al., 2008)

• Characteristic II: the corrosion rate decreases
over time and this declining behavior follows a
power-law model with a less than one positive
exponent ((Velázquez et al., 2009) (Ossai,
Boswell, & Davies, 2015) (Nuhi, Seer, Al
Tamimi, Modarres, & Seibi, 2011))
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Literature review on pitting corrosion 
degradation models; helped point to the correct 
modeling framework

Data-driven 
probabilistic models

Stochastic process-
based models

Non-linear stochastic process-based 
model

(Bazán and Beck, 2013)
Gamma process based 

model
(Maes et al., 2009) 
(Zhang and Zhou, 

2013) 

Markov process based model
(Provan and Rodriguez, 1989), 

(Hong, 1999), (Valor et al., 2007)

Linear stochastic process-
based model

(Bazán & Beck, 2013)

Random variable-
based models

Linear random variable-
based model

(Bazán & Beck, 2013)

Non-linear random variable-
based model

(Velázquez et al., 2009), 
(Ossai et al., 2015) (Nuhi, 

Seer, Al Tamimi, Modarres, 
& Seibi, 2011)

Evaluation of current available models
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Proposed approach
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Fusing ILI and OLI data and physics of the 
failure

[iecetech.org] [Wan et al., 2011]

[Nuhi et al., 2011]
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[Bazán & Beck, 2013; Ossai et al., 2015; Velázquez et al., 2009]



Pros and cons of In-Line Inspection (ILI)

Pros:
• Comprehensive (Covers a long distance)
Cons: 
• Expensive
• High measurement error
• Low frequency (e.g., every five years)
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Pros and cons of In-Line Inspection (ILI)

Pros:
• Comprehensive (Covers a long distance)
Cons: 
• Expensive
• High measurement error
• Low frequency (e.g., every five years)

17

Overestimating maximum pit depth 
leads to unnecessary maintenance



Pros and cons of In-Line Inspection (ILI)

Pros:
• Comprehensive (Covers a long distance)
Cons: 
• Expensive
• High measurement error
• Low frequency (e.g., every five years)

18

Underestimating maximum pit 
depth leads to an unexpected failure



Pros and cons of Online Inspection (OLI)

Pros: 
• Low measurement error
• High frequency (e.g., near continuous)
Cons
• Requires power
• Discrete in location
• They rarely cover a large area of the pipelines
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OLI helps to decrease the epistemic uncertainty



Developed data fusion framework
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 Estimating prior values for model parameters by non-linear regression
analysis.

 Estimating maximum pit depth of ILI pits by using a hierarchical Bayesian-
non-homogeneous gamma process (HB-NHGP)

 Estimating maximum pit depth of OLI pits by augmented particle filtering
(APF)

 Defining similarity index between each ILI pit and each OLI pit
 Generating dummy observations of pit depth for ILI pits
 Using APF to estimate maximum pit depth of ILI pits by using the

generated dummy observation
 Estimating RUL
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Answering the question:
How to fuse more frequent 

OLI data with less 
frequent ILI data of 

different pits at different 
locations? 

Developed data fusion framework
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Developed data fusion framework
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Hierarchical Bayesian-non-homogeneous 
gamma process (HB-NHGP)
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Using this framework to consider change in 
operational condition in RUL estimation
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By using this framework and
taking advantage of having
online sensors, change in
operational condition is
considered in RUL estimation
of the pipeline segment.



RUL estimation 

0.8 PWT

Pit depth

Life (Years)Pit initiation time

Time to failure distribution

Pit depth distribution
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Summary

32

• Objectives
 RUL estimation of a segment of a pipeline

• Approach
 Fusing ILI data and OLI data of different pits

• Results
 Framework is developed
 Synthetic data is generated
 HB-NHGP code is developed

• Future works
 Adding variation of pits initiation times
 Considering POD in modeling
 Validating the proposed framework by finding real degradation data (not 

necessarily pipeline data)
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Non-homogenous gamma process for 
degradation modeling
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Based on the physics of 
failure:/	

• Temporal variability of stochastic 
degradation processes can be modeled 
properly by a gamma process.  

• It is appropriate to model monotonic 
and gradual degradation processes. 



Particle Filtering
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In which is state at time step k, 	is called
process noise and 	is the evolution function.

Measurement Model:

, → 	 |

Where is measurement at time step , 	is 
called measurement noise and is the 
measurement function.
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Reliability analysis of the pipeline segment

Limit state functions

0.8	 Small leak 0	 ∩ 0

2
1 1

0.1571

PWT
2

1.8
	

1 0.6275
.

0.003375
PWT

					 50

0.032
.

3.293																																		
.
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: Ultimate tensile strength
: Pipeline diameter
: Model error
: Pit maximum depth

: Pipeline thickness
: Pit length

: operation pressure

[Kiefner et al., 1973]
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[Stephens & Leis, 2000]

Large leak 0	 ∩ 0	 ∩ 0
Rupture 0	 ∩ 0	 ∩ 0
Safe Otherwise

texascondemnation.com



Motivation
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 Considering change in operational condition in RUL estimation 
of a segment of oil and gas pipelines

 All the available pitting corrosion degradation models assumed that
operational conditions remain the same during the life of the pipeline.

 In some occasions operational conditions change over time:). [Regulations,
PHMSA, 2014 ]
 Flow reversal,
 Product change (e.g. crude oil to refined products),
 Conversion to service (e.g. convert from natural gas to crude oil)

Online monitoring data is required to consider 
change in operational conditions in RUL 

estimation, however, online monitoring of the 
whole pipeline is infeasible.

Proposed solution: fusing ILI and OLI data


