

Y. James Chang, Carmen Franklin

Human Factors and Reliability Branch Division of Risk Analysis Office of Nuclear Regulatory Research

Presented at the PSAM 14 Conference at UCLA September 16 – 21, 2018

Issue – Lack Data

HEPs by HFE (All Methods)

Solution – Collect Data

Brief SACADA History

- 3/2011 the NRC signed a memorandum of understanding (MOU) with STPNOC to develop a tool to collect operator simulator training information for human reliability analysis (HRA) and operator training
 - SACADA aims to provide empirical data with statistical significance to inform human error probability (HEP) estimates
- 5/2012 piloted SACADA software at STPNOC
- Late 2012 to present: outreach for collaboration signed multiple MOUs
- Hosted two international HRA data workshops to present SACADA data for HRA in 4/2015 and 3/2018.

Different Focuses Between Training Department and HRA Analysts Four students took the same exam. The results are:

Toward a Context-Similarity Based Data Analysis to Inform HEP Estimates

A SACADA Output for Data Analysis (Partial)

- Context, Performance Placement, and # of Data Points

I I I I I I I I I I I I I I I I I I I	ge Layout F	ormulas D	ata Review	View	Add-Ins	ADAMS	Acrob	AllData	for coding anal	lysis.xlsx - I	Microsoft Exc	cel										
Cut Calibri	* 11	· A A	= = =	\$\$/~~	🖥 Wrap Text	Ge	neral		·		Normal		Bad		Good	Neut	ral		-	ĸ	Σ Auto	Sum *
Paste B	U - 🖽 -	3 - A -	EEE	<	🔤 Merge & Cer	nter - \$	- %	• <u></u> •.0 .0	Conditional	Format	Calculat	tion	Check Ce		Explanato	ory Inpu	t		Insert Dele	te Forma	Fill *	1
Format Painter			- (=) -			-			Formatting	r as Table ▼			5			-		-	* *	. Ť	Clear	(*
Clipboard is	Font	lai.		Alignme	nt	la	Num	ber	я				Styles						Cel	IS		Editi
F178 + C	$f_{x} = 0$																	1				
A	B C			D				E	F		G		H		AB	AC	AD	AE	AF	AG	AH	
1 Scenario Y	Year Cycle	TOE					Cogni	itiveType	DetectType	AlarmDe	tectMode	Alarm	TileStatus	/lem	ry Deman	ds UNSA	T SAT	SAT Δ	SAT+	тот	UNSAT R	ite(%)
169 RST 213.22	2013	5 Enters OPC	OP04-MS-000:	1 Excessi	ve Steam Dem	and		3	0		0		0		0	0	11	0	0	11	0.0	
170 RST 214.03	2014	2 Determin	es that Steam	Dump P	V-7493 is NOT	respondi	ng	3	Cont	ext	°Fac	<u>`tn</u>	rs		0	Pert	orr	กลเ	ിന്ല	13	0.0	
171 RST 214.02	2014	1 Enters OPC	OP04-TM-0004	4				3	U gint	CAU	0.40		0		0		U • • •			9	0.0	L
172 RST 215.02	2015	1 Determin	es Primary to	Seconda	ry leakage is >	CCP capa	cit	3	0		0		0		0		15	0	0	15	0.0	<u> </u>
173 RST 213.17	2013	4 Enters OPC	OP04-AC-0003	3, Loss of	Closed Loop A	CW		3	0		0		0		0	DISC	DPIC	en	len	C ¹⁰	0.0	<u> </u>
1/4 RST 214.10	2014	3 Enters OPC	OP04-EW-000	1 and tak	es actions to re	estore EC	w	3	0		0		0		0	O O	13	1	0	14	0.0	<u> </u>
175 RST 214.07	2014	3 Enters OPC	OP04-SS-0001					3	0		0		0		0	0	15	0	0	15	0.0	<u> </u>
176 RST 213.13	2013	3 Enters OPC	OP04-DA-0001	L Loss of	Non-Class 125	vdc		3	0		0		0		0	0	12	0	0	12	0.0	<u> </u>
177 RST 213.10	2013	3 Place DA I	level control v	alve in r	nanual and cor	ntrol leve		3	0		0		0		0	0	14	0	0	14	0.0	——
178 Multiple SGs Tube Break	2014	1 Long term	strategy for o	cooldow	h and release r	minimizat	10	3	0		0		0		0	0	2	0	0	2	0.0	——
179 Multiple SGs Tube Break	2014	1 RCS press	ure reduced a	as ciose a	s pressure in t	aulted SG	#.	3	0		0		0		0	0	1	0	0	1	0.0	——
180 ISLOCA	2014	1 RHK trains	s isolated (and	d leak in	aux building te	erminated	"	3	0		0		0		0	0	2	0	0	2	0.0	
181 ISLOCA	2014	Plant Info	rmation diagr	ams (PIL	s) consulted			3	0		0		0		1	1	1	0	0	2	50.0	·
182 RST 214.07	2014	3 Determine	e the threat is	s a PROB	ABLE Inreat Co	naition u	pc	2	0		0		0		0	0	15	0	0	15	0.0	——
103 RST 214.07	2014	4 Declare an	Alert based	on HA7 E		Unidontif		2	0		0		0		0	0	13	1	0	15	0.0	<u> </u>
104 R51 214.14	2014	4 Declare an	C charging in	ant based	on SOVEAL-I	onidenti		2	0		0		0		0	0	14	1	1	15	0.0	———
105 R51 214.14	2014	4 Place CVC	trip BCDs due	service i	Frip Critoria is l	NOT mag		2	0		0		0		0	7	- 14	0	1	15	0.0	7
100 R51 214.14	2014	4 Dues NOT	ions of OBOD		1	NOTHEE		2	0		0		0		0	,	12	0	1	12	40.0	
107 N31 213.14	2013	2 Bocovor r	od D 4 por 0P		1 0001 Addord	um 1		2	0		0		0		0	0	13	0	0	12	0.0	———
100 R51 213.14	2013	5 Identifier	BCS lookage	or "in PC	" and porform			2	0		0		0		0	0	15	0	0	15	0.0	———
100 RST 214.15	2014	5 Declares I	Inusual Event	t nor INO	SUZEAL-1 du	le to unid		2	0		0		0		0	0	14	0	0	14	0.0	
191 BST 215 02	2014	1 Determin	e 128 Essen C	hillor wi	INOT start and	d socuros	Tr	2	0		0		0		0	0	15	0	0	15	0.0	
192 RST 214 14	2013	4 Declare ar	n Alert hased	on BCS le	akage greater	than the	C2	2	0		0		0		0	1	14	0	0	15	6.6	
193 BST 214.12	2014	4 Declares I	Inusual Event	t based o	n HU1 FAL-5 or		1	2	0		0		0		0	0	14	0	0	14	0.0	
194 BST 215.01	2015	1 Determin	es that PDP is	NOT ava	ilable and disc	natches P	ar	2	0		0		0		0	0	15	0	0	15	0.0	
195 RST 215.01	2015	1 Determin	es Power can	NOT be	estored EXPE		nc	2	0		0		0		0	0	15	0	0	15	0.0	
196 RST 214.16	2014	5 (IF NOT is	olated in 15 m	ninutes)	Declares an Un	usual Eve	int	2	0		0		0		0	0	12	0	0	12	0.0	
197 RST 213.17	2013	4 Directs rea	actor trip due	to surge	tank level out	of sight I	ov	2	0		0		0		0	0	10	0	0	10	0.0	
198 RST 214.06	2014	2 Determin	e from 0POP0	4-ZO-00	8 CIP that 0PO	P04-ZO-0	oc	2	0		0		0		0	0	10	1	0	11	0.0	
199 RST 214.06	2014	2 Classify th	ne event as an	ALERT (HA2, EAL-1). Fi	re or expl	05	2	0		0		0		0	1	10	0	0	11	9.0	
200 RST 214.12	2014	4 Directs/Tr	ips reactor, se	ecures 3	RCPs to secure	spray flo	w	2	0		0		0		0	0	13	1	0	14	0.0	
201 RST211.02	2014	1 Determin	es SG being fe	ed is Rup	tured.			2	0		0		0		0	0	4	0	0	4	0.0	
202 RST 213.19	2013	4 Identifies	during adder	ndum 5 p	erformance, Th	he B train	Es	2	0		0		0		0	0	13	0	0	13	0.0	
203 RST 213.19	2013	4 Properly s	elect and ma	intain ta	get temperatu	ure for co	olo	2	0		0		0		0	0	13	0	0	13	0.0	
204 RST 213.19	2013	4 Refers to	0ERP01-ZV-IN	101, Emer	gency Classific	cation. De	ecl	2	0		0		0		0	0	13	0	0	13	0.0	
205 RST 213.19	2013	4 Performs	Immediate ad	tions of	OPOP05-EO-EC	000, inclu	dir	2	0		0		0		0	0	9	3	1	13	0.0	
206 RST 213.10	2013	3 Dispatch a	an operator to	determ	ne the cause o	of the ala	m	2	0		0		0		0	0	14	0	0	14	0.0	
DOT DET 112 10	Sheet1 0	1 Transition	to ODODOE E	0 5611				n	0		0		da l		^	0	1.4	0	^	1.4	0.0	
													1									

An Example of Context-Similarity Analysis (Start with 7042 Data Points)

PIF	Status 1	Status 2	Status 3	Status 4	Data Points
Cognitive Type	Response Planning (R.P.)				1990
R.P. Basis	Skill	Procedure	Knowledge		1282
R.P. Familiarity	Standard	Adaptation Required	Anomaly		959
R.P. Uncertainty	Clear	Uncertain	Competing Priority	Conflicting Guidance	861
Workload	Normal	Concurrent demand	Multiple concurrent demand		523
Time Criticality	Expensive	Normal	Barely adequate		408
Communication Required	Normal	Extensive Within MCR	Extensive Onsite		226
Miscellaneous	Non-Standard	Noisy Background	Coordination	Communicator Unavailable	201
	Memory Demand				

16 Elements of 9 Scenarios Have the Same Context

Elements	UNSAT #	Data Points
Announces transition to 0POP05-EO-ES01	0	9
Enter POP05-EO-EC00 Loss of All AC Power and perform immediate actions	0	15
Enters 0POP05-EO-EC00	0	15
Directs/Sets up/Commences Main Turbine load reduction @ < 5%/min	0	11
Verifies the Reactor and Turbine are Tripped	0	15
Transitions to 0POP05-EO-ES13 at 75,000 gallons in RWST	0	10
Initiates RCS cooldown to Cold Shutdown at < 100 degrees per hour	0	13
Directs/Performs EO immediate actions	0	15
Perform load reduction to <50% per 0POP04-CD-0001, Addendum 3	0	13
Continue through POP04-RC-0003 in an attempt to identify and isolate the source of the leakage.	0	14
Direct a transition to POP05-EO-ES12, Post LOCA Cooldown and Depressurization.	0	14
Stops SDG 13	0	1
Determine and report that RCS leakage has exceeded charging capacity to maintain pressurizer level.	0	14
Transition to POP05-EO-EO10 based on RCS leakage to containment.	0	14
Directs/performs actions of 0POP05-EO-ES01 Reactor Trip Response	0	14
Transition to POP05-EO-EO10, Loss of Primary or Secondary Coolant.	0	15
TOTAL	0	201

Change the Response Planning Basis from Procedure-Based to Knowledge-Based

PIF	Status 1	Status 2	Status 3	Status 4	Data Points
Cognitive Type	Response Planning (R.P.)				1990
R.P. Basis	Skill	Procedure	Knowledge		626
R.P. Familiarity	Standard	Adaptation Required	Anomaly		459
R.P. Uncertainty	Clear	Uncertain	Competing Priority	Conflicting Guidance	373
Workload	Normal	Concurrent demand	Multiple concurrent demand		245
Time Criticality	Expensive	Normal	Barely adequate		189
Communication Required	Normal	Extensive Within MCR	Extensive Onsite		124
Miscellaneous	Non-Standard	Noisy Background	Coordination	Communicator Unavailable	115
	Memory Demand				

8 Elements of 5 Scenarios have the Same Context

Elements	UNSAT #	Data Points
Enter POP04-ZO-0004, Personnel Emergencies	0	15
Perform EO00 immediate actions from memory; close E1C1 and E1C2 LC supply breakers if SI actuated	1	14
Enters 0POP04-CD-0001	0	14
Enters 0POP04-RC-0003, Excessive RCS Leakage	0	14
Enter POP05-EO-EO00, Reactor Trip or Safety Injection	0	14
Directs/Performs 0POP04-ZO-0003, Secondary Plant Stabilization	0	14
Enters 0POP04-TM-0004, Failure of Turbine Impulse Pressure Transmitter (PT-505/506)	0	15
Enter POP04-RC-0003, Excessive RCS Leakage and transition to Addendum 3.	0	15
TOTAL	1	115

Context Similarity

- Increase data usability
 - Data points of different elements in different scenarios can be pooled together to provide statistical indications
- Inform HEP estimates more reliably than task-based analysis
- Provide more granularity on performance shaping factor (PSF) effects than existing HRA methods
 - Context specific PSF effects on human performance
 - E.g., Change UNSAT ratio from 0/201 to 1/115 due to change from procedure-driven to knowledge-driven in the specific context. Potential to significantly improve HEP accuracy.

Context Similarity Presented in 3/2018 HRA Data Workshop

- 3TKS (Stanley Fitch et al.,) and UMD (Katrina Groth) employed Bayesian Belief Net tool to use SACADA data to estimate HEPs
- IESS (Ali Azarm, et al.,) presented a formal quantitative method to identify and group critical PSFs

3TKS: Trinitek Services, Inc UMD: University of Maryland, College Park IESS: Innovative Engineering & Safety Solution, LLC

Current Status

- Continue outreach for data collection collaboration
- Developing SACADA 2
 - Collect simulator training, job performance measures, written exams, and actual event information in a single database
 - Beta version expected to be available in 11/2018
- Explore to have a BBN-based tool that incorporates human performance data of various sources to inform HEP estimates
- Looking for an organization to manage and promote the use of SACADA