

Modeling Human Actions as a Dynamic Process in the Context of External and Internal Hazards

J. Peschke, M. Röwekamp

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)

PSAM Conference 2018, September 16.-21., Los Angeles, USA

Content

- Complexity arising in case of external and internal hazards
- Dependencies and Interactions affecting action sequences influence on human reliability
- Application Example Fire Fighting Procedure depending on
 - time effects
 - > aleatory uncertainties
 - > system/process states
 - stress behavior
- Example Result of Application

Complexity arising in case of External / Internal Hazards

- External and internal hazards may
 - > cause various impacts on the plant
 - lead to cascading effects increasing the problems to deal with
- Human actions (HA) are required to prevent or mitigate harmful consequences
- Situations from unforeseen impacts are unfamiliar and unexpected to personnel constituting a complex problem to be solved
 - knowledge based behavior is required where novel strategies have to be conceived and applied
- A human procedure is characterized by dependencies and interactions
 - causing different action sequences to be executed
 - influence human reliability

Interdependency of Human Reliability (HR) and Time Effects:

- Reliability of a human procedure depends
 - on the correct execution of actions and
 - > on the time when actions are accomplished
- The required time t_{crit} until HA must be accomplished to be a success is determined by process behavior

 \star Time is an important factor to be considered in HRA \star

Dependency of Human Actions on System/Process States:

Dependency of Human Actions on Stochastic Influences:

Aspects of Modeling Stress in HRA

- Stress is a dynamic quantity which may increase (decrease) depending on
 - > system and plant conditions
 - complexity of tasks to be solved
 - success or failure of previous actions
- Behavior of stress is related to individuals in given situations
 - some may develop high stress while others may not
- Uncertainty exist
 - > if stress increases in given situations
 - > what decisions are made under high stress -> error of commission

Crew-Module

- To consider time effects and dependencies advanced methods in human reliability analysis are required
- A method was developed (Crew-Module)
 - to model and simulate a human procedure as dynamic event sequences
 - > to consider dependencies of action sequences on
 - time effects
 - stochastic influences (aleatory uncertainties)
 - system/process states
 - stress behavior

Stressentwicklung

bleiben

nommen.

(13)

Der Stress des betroffenen

Personals wird sich über das Optimal-Niveau erhöhen und bis auf weiteres auf diesem Niveau

Da die Reaktion auf einen Brand-

alarm als hochgradig geübt einge-

schätzt wird, werden vorerst keine negativen Auswirkungen auf die

Mögliche Erhöhung

des Stressniveaus

Unsicherheit über

bleibt gleich p=0.5

betrifft SL und BL

steigt p=0.5

Stressentwicklung:

Hohe Stressentwicklung

Zuverlässickeit der unmittelbar anschließenden Schritte ange-

Application Example: Fire-Fighting Procedure

GRS

Result: Quantifying the effect of false information and high stress

Conclusion:

- Dependencies and time interactions are relevant issues influencing the success of a human procedure
- To consider dependencies and time interactions advanced methods of dynamic HRA are required
- At GRS a method was developed
 - > to model and simulate human procedures as dynamic event sequences
 - > dependencies, time interactions and stress can be considered
- The approach was applied to a fire-fighting procedure and can be used
 - to calculate time distributions of relevant actions
 - to quantify the effect of random events or stress on HR