IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Feedback on the use of risk metrics for L2 PSAs

Nuclear Safety Division Severe Accidents Department

> Guillaume KIOSEYIAN Yves GUIGUENO Emmanuel RAIMOND

> > PSAM 14 September 2018

> > > © IRSN

Contents

1. Introduction

2. Assessment of severe accident consequences

3. Risk metrics for L2 PSAs

4. Conclusion

1. INTRODUCTION

1. INTRODUCTION

- IRSN develops its own L2 PSAs for the French NPPs with significant efforts to have a realistic modelling of the severe accident progression
 - Separated model approach
 - Set of software tools all designed by IRSN engineers and researchers (PSAM 13)

1. INTRODUCTION

- IRSN develops its own L2 PSAs for the French NPPs with significant efforts to have a realistic modelling of the severe accident progression
 - Separated model approach
 - Set of software tools all designed by IRSN engineers and researchers (PSAM 13)

2. SEVERE ACCIDENT CONSEQUENCES

2. SEVERE ACCIDENT CONSEQUENCES

Objectives assigned

Characterization of severe accident consequences is a key step in the evaluation of risks

Objectives assigned to the assessment of severe accident consequences

- To take into account the <u>chronology</u> and the <u>uncertainties</u> related to the assessment of radioactive releases
- To provide <u>realistic orders of magnitude</u> with <u>very short calculation times</u>

Development of two software

2. SEVERE ACCIDENT CONSEQUENCES

7 MER software: radioactive releases

Amplitude and kinetics of radioactive releases

Models introduced in MER are mainly simplified models from the ASTEC code, also developed by IRSN

MER is validated by cross-checking with ASTEC

Three fission products groups

- Aerosol
- Halogen (iodine)
- Noble gas

2. SEVERE ACCIDENT CONSEQUENCES

MERCoR software: radiological consequences

Dose and ground deposition

- Over the first 90 kilometers from the NPP and the first 30 days after the initiating event
- One given standard meteorological condition
- 1-year-old-child exposed to the radioactive plume in the wind axis

Exposure pathways

- External exposure from the plume and from ground deposition
- Internal exposure from inhalation
- Internal exposure from ingestion is planned in the years to come

Radionuclides considered cover 99% of the radiological consequences

7 IRSN multi-criteria approach with a set of risk metrics

History of L2 PSAs presented results at IRSN

- Until 2007
 - Frequency of the different containment failure modes
 - Amplitude of radioactive releases in Becquerel
 - \rightarrow Consistent with the definition of a L2 PSA but difficulty to have a good understanding of the issues associated to the severe accident scenarios

7 IRSN multi-criteria approach with a set of risk metrics

History of L2 PSAs presented results at IRSN

- Until 2007
 - Frequency of the different containment failure modes
 - Amplitude of radioactive releases in Becquerel
 - \rightarrow Consistent with the definition of a L2 PSA but difficulty to have a good understanding of the issues associated to the severe accident scenarios
- From 2007
 - Frequency of the different containment failure modes
 - Amplitude of radioactive releases in Becquerel
 - Short- and long-term radiological consequences
 - \rightarrow Today, this <u>multi-criteria approach</u> provides a better understanding of the consequences of a severe accident

7 IRSN multi-criteria approach with a set of risk metrics

Short-term radiological consequences

- Risk metrics: <u>effective dose</u> and <u>thyroid equivalent dose</u>
- Used in the French Public Health Code to define the protection measures in case of radiological emergencies
- Possible to rank L2 PSAs scenarios according to their short-term consequences

 \rightarrow Feedback: highly satisfactory

7 IRSN multi-criteria approach with a set of risk metrics

Short-term radiological consequences

- Risk metrics: <u>effective dose</u> and <u>thyroid equivalent dose</u>
- Used in the French Public Health Code to define the protection measures in case of radiological emergencies
- Possible to rank L2 PSAs scenarios according to their short-term consequences

 \rightarrow Feedback: highly satisfactory

Long-term radiological consequences

- Risk metric: contamination of soils with caesium-137
- Used in the Soviet Union to define the extent of contaminated territories after the Chernobyl accident
- Possible to rank L2 PSAs scenarios according to their long-term consequences

 \rightarrow Feedback: highly satisfactory

Extension of the current set of risk metrics with a communication tool

New risk metric: <u>radiological equivalence to iodine-131 for releases</u> to the atmosphere (in Bq), used to define the INES

Extension of the current set of risk metrics with a communication tool

New risk metric: <u>radiological equivalence to iodine-131 for releases</u> to the atmosphere (in Bq), used to define the INES

The INES

- Developed in 1990 by IAEA to allow prompt communication of the significance of a nuclear event
- 7 levels
- 20 radionuclides considered (caesium-137, plutonium-239, strontium-90, ...)
- Principle: to apply multiplying factors to the activity released for a given radionuclide to provide an iodine-131 equivalent activity
- Factors are calculated by considering the effective dose with exposure from inhalation (short-term) and ground deposition over 50 years (long-term)
 - \rightarrow External exposure from the plume not considered
 - \rightarrow Noble gases are neglected

Extension of the current set of risk metrics with a communication tool: the INES

Feedback on the use of the INES for presenting L2 PSAs results

- Possible to associate an INES level to each L2 PSA scenario
- However some limitations of the INES have been highlighted

 \rightarrow Feedback: not fully satisfactory

The following explains what the limitations are, by using the results of the last French 900 MWe PWRs internal initiating events L2 PSA study

- \rightarrow ~ 500,000 severe accident scenarios
- \rightarrow ~ 50,000 release categories

Extension of the current set of risk metrics with a communication tool: the INES

18/27

Extension of the current set of risk metrics with a communication tool: the INES

Extension of the current set of risk metrics with a communication tool: the INES

Extension of the current set of risk metrics with a communication tool: the INES

4. CONCLUSION

4. CONCLUSION

IRSN multi-criteria approach with a set of risk metrics

- Short-term: <u>effective dose</u> and <u>thyroid equivalent dose</u>
- Long-term: <u>contamination of soils with caesium-137</u>
- Quite useful and satisfactory for ranking L2 PSAs severe accident scenarios

Use of the <u>INES</u> as a communication tool for presenting L2 PSAs results

- Interesting feedback as each L2 PSA scenario can be associated to an INES level
- However some limitations of the INES have been found
 - Neglect of the noble gases contribution
 - Level 7 groups scenarios whose radiological consequences are too different
- The INES is not fully adapted to be used as a risk metric for L2 PSAs but constitutes an interesting starting point to define the requirements associated to the development in the future of one risk metric

Thank you for your attention

ANNEXES

PHYSICAL PHENOMENA INCLUDED IN THE APET

DOSE CALCULATION WITH MERCOR (1/2)

DOSE CALCULATION WITH MERCOR (2/2)

Plume = Succession of instantaneous releases 1 instantaneous release = 1 Gaussian puff

In MERCoR, the axis of the plume and the axis of the wind are the same

IRSN 34/27

Table 1: French intervention trigger levels in case of radiological emergencies [8]

Protection measure	Indicator	Trigger level (mSv)
Sheltering	Effective dose (all pathways	10
Evacuation	of exposure except ingestion)	50
Administration of a stable iodine tablet	Thyroid equivalent dose (all pathways of exposure except ingestion)	50

Table 2: Zoning of territories affected by radioactive contamination resulting from the catastrophe at the Chernobyl NPP [9]

Caesium-137 ground	Zone designation in	Zone designation in	Zone designation in	Zone designation in
deposition (kBq/m ²)	Russian Federation	Belarus	Ukraine	this paper
37-185	Favourable social and	Deriadia control	Reinforced	Radiological
	economic status	renoule control	radiological control	control
185–555	Right of relocation	Right to be resettled	Guaranteed voluntary	Voluntary
			resettlement	resettlement
555-1,480	Poloation	Subsequent	Obligatory	Subsequent
	Relocation	relocation	resettlement	resettlement
> 1,480	Obligatory	Immediate	Obligatory	Primary
	relocation	resettlement	resettlement	resettlement

	ŭ	
Zone	Indicator	Guidance value
Heightened territorial surveillance zone (ZST)	Maximum permitted levels of contamination of foodstuffs	According to foodstuffs
Public protection zone (ZPP)	Effective dose (all pathways of exposure)	> 10 mSv during the first month following the end of release
	Thyroid equivalent dose (all pathways of exposure)	> 50 mSv during the first month following the end of release
Relocation perimeter (PE)	Effective dose (all pathways of exposure except ingestion)	> 10 mSv during the first month following the end of release

Table 3: French indicators and guidance values for defining post-accident zoning [12]

