

Results of an IDPSA Aimed to Assess the Potential of a Thermally Induced Steam Generator Tube Rupture

Martina Kloos, Joerg Peschke, GRS PSAM 14 UCLA, Los Angeles, CA September 16-21, 2018

Introduction

- Investigated accident is a high pressure scenario with core melt.
- If an SGTR occurs, the containment is bypassed and fission products may be released directly to the environment.
- The releases may be reduced, if creep ruptures of the main coolant pipe (MCPR) or the surge line (SLR) additionally occur.
 - Fission product retention within the primary system
- MCPR or SLR may even prevent an SGTR and avoid a direct release of fission products.

M. Kloos: IDPSA approach to assess the potential of a thermally induced steam generator tube rupture

Introduction

Questions to be answered by the IDPSA study:

- How likely is an SGTR?
- How likely occurs an SGTR in combination with an MCPR or SLR?
- Is an MCPR or SLR before or after an SGTR?
- Which are the system conditions leading to a rupture at which time?

Scenario and aleatory uncertainties

- Initiating event of the accident is a total SBO.
- Since on-site power and emergency diesels are not available, the crew must prepare the 'Bleed & Feed' of the SG.
 - Aleatory uncertainty: Performance of the crew
- Pressure in the SG increases steadily and the main steam relief valves (SRVs) are required to open automatically for partial pressure release.
 - Aleatory uncertainty: Performance of the valves
 - Assumption: Valves open with reduced cross section
- When 'Bleed & Feed' is prepared and specific criteria are fulfilled, the crew has to manually open the SRVs ('Bleed').
 - Aleatory uncertainty: Performance of the crew
 - Assumption: 'Feed' is not carried out

Scenario and aleatory uncertainties

- To limit the pressure on the primary side, the pressurizer valves are cyclically demanded to open and to close.
 - Aleatory uncertainty: Performance of the three pressurizer valves
- When coolant temperature or differential pressure 'containment reactor building' exceeds specific levels, the crew must carry out the primary 'Bleed & Feed'.
 - Assumption: primary 'Bleed & Feed' is not carried out

Additional aleatory uncertainty:

- Degree of SGT degradation (reduction of wall thickness)
 Two degradation classes:
 - $\leq 20 \%$: 0.96 1.2 mm wall thickness
 - 20 70 %: 0.36 0.96 mm wall thickness

Epistemic uncertainties

- Failure probabilities of the pressurizer valves:
 - Probabilities of independent stuck close/stuck open failures
 - Probabilities of stuck close /stuck open common cause failures
- Transition probabilities of Markov chain applied to assess SGT degradation:
 - Probability of tube degradation proceeding from a degradation class to the next one
- 22 Parameters of the computer code applied for accident simulation:

No.	Parameter Name	Distribution Type
1	time delay RESA signal	Uniform
2	correction factor decay heat	Uniform
3	maximum value of steam pressure	Polygonal Line
4	additional change of set value of maximum steam pressure	Uniform
5	contraction value of steam discharge	Polygonal Line
6	pressure loss in nozzle	Polygonal Line
7	correction factor for opening cross section of pressurizer relief valve	Uniform
8	correction factor for opening cross section of pressurizer safety valves	Uniform
9	correction factor for opening cross section of main steam safety valves	Uniform
10	heat conductivity of UO2	Uniform
11	heat conductivity of ZR	Uniform

IDPSA tool, computer code and simulations

- IDPSA study was carried out with MCDET in combination with
 - its add-on Crew Module for generating time-dep. human action sequences
 - the code ATHLET-CD for accident simulation
- 100 dynamic event trees (DETs) were generated with different values for epistemic & aleatory variables.
- Sequences were calculated up to maximally 20000 s (~5.6 h).
- When an MCPR or SLR occurred, a simulation run was stopped automatically.
- 4216 different sequences were generated in total.

Epistemic Uncertainty of the Likelihood of an SGTR

Likelihood relates to SGTR without preceding MCPR or SLR.

- Range: 0.883 1.00
- Median: ~ 0.987
- SGT degradation > 20%:
 - Median: ~ 0.997

Epistemic Uncertainties of the Likelihoods of MCP and SL ruptures

Likelihood (MCPR):

- Median: ~ 0.8
- 10%-quantil: > 0.1
- Likelihood (SLR):
 - ≤ 0.1
 - Median: < 10⁻⁵

Likelihood (SGTR & MCPR) = Likelihood (MCPR)

MCPR after SGTR

Likelihood (SGTR & SLR) ≠ Likelihood (SLR)

SLR before or after SGTR

Distribution of SGTR Time

Temperature at SGTR & SGT Wall Thickness

Distribution of the Temperature at SGTR Time

Pressure & Temperature at SGTR Time

M. Kloos: IDPSA approach to assess the potential of a thermally induced steam generator tube rupture

Distributions of MCP & SL Rupture Times

SLR time < MCPR time

SLR occurs at

- a temperature > 900°C
- a pressure < 12 MPa</p>
- caused by pressurizer valves failed in stuck open mode

Pressure & Temperature leading to SLR

M. Kloos: IDPSA approach to assess the potential of a thermally induced steam generator tube rupture

Conclusions

- Presented IDPSA study can be considered as a complementary analysis to the classical PSA Level 2.
- It provided useful information on the potentials of creep ruptures in a high pressure scenario:
 - High likelihood of an SGTR without a preceding MCPR or SLR.
 - High likelihood of a subsequent MCPR.
 - Only small likelihood of an SLR.
 - SLR may occur before or after an SGTR and is caused by a pressurizer valve failed in stuck open mode.
 - SGTR (degradation ≤ 20 %, wall thickness: ≥ 0.96 mm) is most likely thermally induced.
 - SGTR (degradation > 40 %, wall thickness: < 0.72 mm) is most likely induced by high pressure differential.

Outlook

- Next investigations will be focused on the identification of the main influencing factors on the results:
 - timing of human actions?
 - stuck close / stuck open failures of the pressurizer valves and resp. failure times?
 - model uncertainties?
- Additional investigations will address the countermeasures which may prevent an SGTR or mitigate its consequences.
 - At what time and at which system states the implementation of additional feeding options may be effective?
- MCDET will be further developed, so that the existing DETs can be easily enhanced and the DET simulations can be continued.