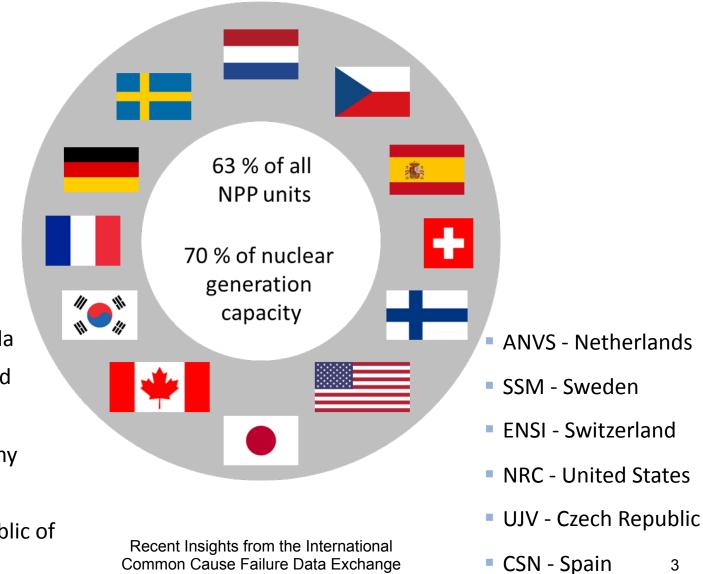
Recent Insights from the International Common Cause Failure Data Exchange (ICDE) Project

PSAM 14


September 17-21, 2018, Los Angeles, California

Presenter: Michelle Gonzalez, U.S. Nuclear Regulatory Commission Authors: Benjamin Brück, Gesellschaft für Anlagen- und Reaktorsicherheit, GRS Cologne, GERMANY benjamin.brueck@grs.de Gunnar Johanson, ÅF-Industry, SWEDEN gunnar.johanson@afconsult.com

International Common Cause Failure Data Exchange

- The ICDE project was initiated in August 1994.
- Since April 1998, the OECD/NEA has formally operated the project.
- ICDE defines the formats for collection of CCF events in order to arrive in a consistent database.
- The ICDE project phase VII covers the period 2015-2018
- Continuation of the project is planned, phase VIII is intended to start 2019

Participants in phase VII

- **CNSC** Canada
- STUK Finland
- **IRSN** France
- **GRS** Germany
- NRA Japan
- **KAERI Republic of** Korea

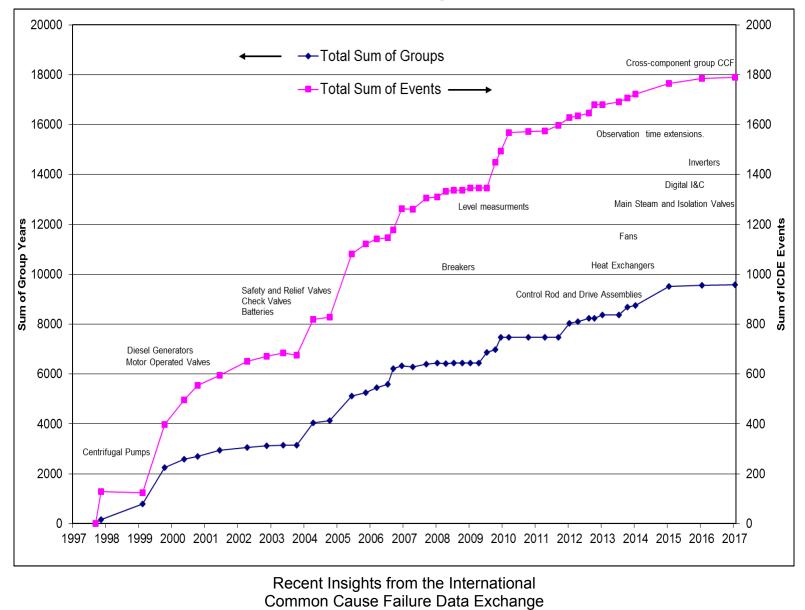
Common Cause Failure Data Exchange (ICDE) Project

ICDE Objectives (1/2)

- To provide a framework for an international co-operation
- To collect and analyse CCF events on a long term basis
- To better understand CCF events, their causes and their prevention

ICDE Objectives (2/2)

- Experience feedback on CCF phenomena and on defence against CCF
 - To generate qualitative insights into the root causes and failure mechanisms of CCF events.
 - To be used to derive approaches for their prevention or for mitigating their consequences
- To record event attributes to facilitate quantification of CCF frequencies
 - When so decided by participants of the project.


Operating Structure

- The in-kind principle is followed
 - Data exchange means that each participant gets the dataset corresponding to its own data sent to ICDE.
- Data collection and analysis has to be organized on national levels.
- ICDE data is restricted by proprietary rights.

Definitions

- Common Cause Failure Event:
 - A dependent failure in which two or more component fault states exist simultaneously, or within a short time interval, and are a direct result of a shared cause.
 - ICDE data collection includes also potential CCF events
- ICDE Event
 - Impairment of two or more components (with respect to performing a specific function), which exists over a relevant time interval and is the direct result of a shared cause.

ICDE - Progress

(ICDE) Project

Data Collection Overview (November, 2017)

Component Type	CCF Events	Percentage	Complete CCF	Partial CCF
Centrifugal Pumps	399	22,0%	51	39
Safety and Relief Valves	271	15,0%	26	36
Diesels	236	13,0%	26	18
Control Rod Drive Assembly	173	9,6%	3	24
Motor Operated Valves	172	9,5%	9	33
Level measurement	154	8,5%	7	27
Check valves	117	6,5%	14	24
Breakers	110	6,1%	8	25
Breakers	110	6,1%	8	25
Battery	77	4,3%	5	2
Heat Exchanger	55	3,0%	4	1
Fans	32	1,8%	3	0
Main Steam Isolation Valves	10	0,6%	3	0
Digital I&C	4	0,2%	2	0
Cross-component CCF	0	0,0%	0	0
Total	1810 Rece	100% nt Insights from the Inte	161 ernational	229

Common Cause Failure Data Exchange

Technical Scope, Current Status (1/3)

- The ICDE Steering Group prepares publicly available reports
 - Containing insights and conclusions from the analysis performed whenever
- Major steps of the project have been completed, e.g.
 - · analysis of a dataset for a certain component type or
 - \cdot a certain topic

Technical Scope, Current Status (2/3)

- Data and publicly available component reports for
 - Centrifugal Pumps, Diesel Generators, Motor-Operated Valves, Safety Relief Valves, Check Valves, Batteries, Level Measurement, Breakers Control Rod Drive Assemblies, Heat Exchangers
- Topical reports on CCF events
 - External factors (2015, 43 events)
 - Emergency Diesel Generators with all redundant diesels affected (completed, to be published)
 - Plant Modifications (2017, 54 events)
 - Improving Testing (Drafted, 59 events)
 - Multi-unit events, (Drafted, 87 multi-unit events)

Technical Scope, Current Status (3/3)

- Ongoing data exchange
 - Fans
 - Digital I&C
 - Inverters (in preparation)
 - Cross component CCF: multiple component group CCF due to asymmetric electrical faults (in preparation)
- Ongoing topical analyses
 - CCF due to plant modifications
 - Inter-system dependencies
 - Pre-initiator human failure ICDE events.
- Ongoing development of guidelines
 - Failure analysis guideline

Recent Insights from the International Common Cause Failure Data Exchange (ICDE) Project

Example: Topical report on Improving Testing

- Identify testing inadequacies that contributed to CCF events
- Identify ways to improve testing to reduce risk of events occurring
- 59 events identified related to this topic
- **Test inadequacy categories Category description** Number of events **Extent of test** Testing did not cover all aspects that could prevent failure 16 QA of test / maintenance / QA and/or adequacy of testing modification were the most common issues 33 **Performance of test** Errors during testing with focus on instructions, use of equipment, staff training and work control 9 Verification of operability Inadequacy in the verification of operability after test, maintenance or modification 18 Unknown Related to testing, but specific 2 inadequacy was not determined Recent Insights from the International Common Cause Failure Data Exchange
- An event could be assigned to more than one category

Lessons Learned from Improving Testing

- A process for quality assurance of procedures to ensure completeness, adequacy and validity of test is shown to be of high importance.
- When performing the test, it is important:
 - To verify the testing equipment
 - To ensure a high degree of training of the personnel performing tests
 - To have a safety culture to adhere to procedure steps and verify the work
- Verification of operability after test, maintenance activities and modifications are essential.
- The actual observed defences that prevented events from becoming complete CCFs shows that experience feedback from other units and previous events can be a successful way to detect latent failures.

Example: Topical report on Multi-Unit CCFs

- A multi-unit event consists of individual ICDE events of the same type that share a multi-unit dependency.
- The analysis covers 87 multi-unit events, which includes a total of 192 ICDE events.

Multi-Unit CCF Event Classification:

- Internal factors Shared cause Dependent multiple CCF events at a site
 - The same CCF failure mechanism is present and existing on multiple units at the site
- External factors Shared environment or physical connection Dependent multiple CCF events at a site
 - There exists a physical connection, an external connection, or a shared external environment between the affected systems and components.
- Fleet CCF events Multiple CCF events occurring at multiple sites
 - Same or similar types of CCF events occurring at different sites.

Recent Insights from the International Common Cause Failure Data Exchange (ICDE) Project

Multi-Unit CCF Event Categories

	Multi-				
Component type	1. Internal factors (Shared cause)	2. External factors (Shared environment or physical connection)	3. Fleet CCF events	Total	Percent
Battery	7		2	9	10%
Breakers		1	1	2	2%
Centrifugal Pumps	16	4	2	22	25%
Check valves	4		1	5	6%
Control Rod Drive Assembly		1		1	1%
Diesels	16	7	3	26	30%
Heat Exchanger	2			2	2%
Level measurement	1		3	4	5%
Motor Operated Valves	4	1	1	6	7%
Safety and Relief Valves	7		3	10	11%
Total		14 Its from the Internation Se Failure Data Exchan		87	100%

Lessons Learned from Multi-Unit CCF Events

- Multi-unit events were observed for a wide range of component types.
 - Diesels and Centrifugal pumps were most common, i.e., more than 50% of events involved these types.
- The most common root cause for multi-unit CCF events is deficiency in the design of components and systems.
 - Events with design as predominant root cause and environment as contribution cause are significantly overrepresented.
 - Multi-unit events which involve environment effects usually require design improvements to prevent reoccurrence.
 - Events with observed environmental deficiencies were caused by harsh environmental conditions, such as severe weather or abnormal debris in a raw water source.
- About 10% of the events were complete multi-unit CCF events
 - Meaning that all the impacted components at all the impact units were completely failed.

Conclusion

- ICDE has changed the views to CCFs a great deal.
 - CCFs exist, 160 complete CCFs
 - Deep plant data collection and combining information from many sources, of which a major deal from NPP maintenance databases, needed.
- It is worth forming specialized data exchange projects like ICDE since they can be made to produce useful reports and insights.
- This, however requires,
 - the will of participants from several countries to form a critical mass
 - national efforts to collect lower level data
 - forming of a legal framework to protect proprietary data
 - a long term commitment to consistently continue and develop the activity.
- National efforts are the key to the success of any project relying on operating experience.

Further Conclusion

- ICDE has given a birth to several similar types of projects.
 - OPDE for pipe failure events (on-going under CODAP project)
 - OECD-FIRE for NPP fire events.

More information:

Publicly available reports

- http://home.nea.fr/html/nsd/docs/indexcsni.html
- https://projectportal.afconsult.com/ProjectPortal/icde

Thank you for your attention!