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Best title ever, amiright!? 
#nailedit 



Let’s break down that title… 

Aggregation of  
[combining] 

Autocalculated Human Error Probabilities 
[automatically generated HEPs] 

from Tasks to Human Failure Events 
[from subtasks to HFEs]  

in a Dynamic HRA Implementation 
[in HUNTER] 
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Human Unimodel for Nuclear Technology to 
Enhance Reliability (HUNTER) 



Human Unimodel for Nuclear Technology to 
Enhance Reliability (HUNTER) 

Unimodel 
Derived from decision 
making literature; A 
simplified cognitive 
model 



Human Unimodel for Nuclear Technology to 
Enhance Reliability (HUNTER) 



What HUNTER is Currently 
Plant model 
•  RAVEN interface with thermo-hydraulics software (RELAP) 
Subtask modeling system 
•  New approach called GOMS-HRA 
•  Provides mapping between procedures, error taxonomies, 

and task primitives needed for HRA 
•  Provides timing and nominal human error probability (HEP) 
Auto-calculating performance shaping factor (PSF) 
•  SPAR-H based PSF system 
•  Currently auto-calculating Complexity PSF based on plant 

parameters 
•  PSF serves as multiplier to refine HEP 



GOMS-HRA Cognitive Framework 
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SPAR-H 
•  SPAR-H determines HEP based on expert estimation using calculation 

worksheets 
•  Estimation of PSFs carried out using predefined multipliers and a 

nominal failure probability 



Dynamic Complexity Modeling 
•  Complexity as a proof-of-concept PSF 

–  Well documented from static HRA 
–  Determined to be one of the main drivers on operator performance 

across a number of studies (e.g., NUREG-2127) 
–  Recent modifications to SPAR-H for the Norwegian Petro-HRA 

project give us insights on how to model and operationalize 
Complexity as a PSF 

•  In SPAR-H, the analyst subjectively assigns a level for the Complexity 
PSF (a multiplier on the nominal HEP) 

•  In dynamic SPAR-H, the PSF multiplier is auto-calculated based 
on plant parameters 

•  In dynamic HRA it is not possible to use a subjective evaluation for 
each simulation 



Dynamic Complexity Modeling 
•  Examples of auto-populated aspects that could be used 

–  Total size of the task or scenario (size complexity) 
–  Number of success criteria (goal complexity) 
–  Number of alternative paths to the goal(s) (goal complexity) 
–  Number of steps conducted (step complexity) 
–  Number of tasks per time (temporal complexity) 
–  Time spent on task (temporal complexity) 
–  Time in scenario (temporal complexity) 

•  Examples of categorization aspects that could be included 
–  Amount of information the operator uses in this task (size complexity) 
–  Is the task influenced by factors outside of the operators control 

(dynamic complexity) 
–  Is the task connected to other tasks (connection complexity) 
–  Number of procedures used by the operator (procedure complexity) 
–  Number of operators involved (interaction complexity) 



Modeling Station Blackout 
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1. An external event (i.e., earthquake) causes a LOOP due to damage of both 500 KV and 
161 KV lines; the reactor successfully scrams and, thus, the power generated in the core 
follows the characteristic exponential decay curve 

2. The DGs successfully start and emergency cooling to the core is provided by the 
Emergency Core Cooling System (ECCS) 

3. A tsunami wave hits the plant, causing flooding of the plant itself. Depending on its 
height, the wave causes the DGs to fail and it may also flood the 161 KV switchyard. 
Hence, conditions of SBO are reached (4160 V and 480 V buses are not energized); all 
core cooling systems are subsequently off-line (including the ECCS system) 

4. Without the ability to cool the reactor core, its temperature starts to rise 
5. In order to recover AC electric power on the 4160 V and 480 V buses, three strategies 

based on the Emergency Operating Procedures (EOPs) are followed: 
• A plant recovery team is assembled in order to recover one of the two DGs  
• The power grid owning company is working on the restoration of the primary 161 

KV line  
• A second plant recovery team is also assembled to recover the 161 KV switchyard 

in case it got flooded 
6. Due to its lifetime limitation, the DC battery can be depleted. If this is the case, even if 

the DGs are repaired, DGs cannot be started. DCs power restoration (though spare 
batteries or emergency backup DC generators) is a necessary condition to restart the DGs 

7. When the 4160 KV buses are energized (through the recovery of the DGs or 161KV 
line), the auxiliary cooling system (i.e., ECCS system) is able to cool the reactor core 
and, thus, core temperature decreases. 

 
 
!

!
!

Figure 18. Sequence of events for the SBO scenario considered. 
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Example Normalized Complexity Mapping 

 

 55 

7.7.2 Calculating Complexity 
 
We calculated complexity by two methods—linear and stochastic. The linear method simply 
reflects a traditional multiple regression equation based on a representative simulator run. In the 
linear form, the coefficients are fixed to a single value. In the stochastic form, the coefficients 
represent a range of values, thereby more accurately modeling uncertainty. The linear and 
stochastic forms of complexity are compared to each other later in the SBO simulations 
described in Section 7.9.  
 
7.7.2.1 Linear Form of Complexity 
 
A basic 20 task dataset was generated for illustrative purposes, which is displayed in Table 20.  
Complexity increases and decreases based on the situation the operator is facing.  Loss of off-site 
power (LOOP), loss of diesel generator (LODG), and loss of battery (LOB) are all considered 
binary: 1 means there has been a loss, and 0 means the system is operating within normal 
parameters.  Reactor temperature and reactor power level are both randomly sampled from 
RAVEN simulations of an SBO scenario. 
 
Table 20. A 20-task breakdown of complexity for a station blackout event. 
 

Task LOOP LODG LOB Reactor 
Temperature 

Reactor 
Power 
Level 

SME 
Complexity 

Calculated 
Complexity 

Normalized 
Complexity 

1 0 0 0 566.69 100.00 1 -2.57 1.00 
2 0 0 0 565.00 99.99 1 -2.56 1.00 
3 0 0 0 568.69 100.00 1 -2.57 1.00 
4 0 0 0 567.44 99.99 1 -2.57 1.00 
5 1 0 0 540.28 3.15 3 4.40 2.77 
6 1 0 0 539.92 2.95 3 4.40 2.77 
7 1 0 0 539.49 2.79 3 4.40 2.77 
8 1 0 0 561.59 2.38 3 4.39 2.76 
9 1 0 0 538.57 2.48 3 4.41 2.77 

10 1 0 0 538.55 2.63 3 4.41 2.77 
11 1 0 0 538.55 2.63 3 4.41 2.77 
12 1 0 0 538.55 2.63 3 4.41 2.77 
13 1 1 0 575.73 1.36 4 9.40 4.03 
14 1 1 0 624.89 1.29 4 9.35 4.02 
15 1 1 1 1775.04 0.75 5 13.21 5.00 
16 1 1 1 2092.49 0.66 5 12.89 4.92 
17 1 1 1 2257.35 0.60 5 12.73 4.88 
18 1 1 1 2374.40 0.54 5 12.61 4.85 
19 1 1 1 2407.60 0.00 5 12.59 4.84 
20 1 1 1 2400.87 0.51 5 12.59 4.84 
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An HRA subject matter expert (SME) assigned complexity ratings for the scenario on a scale 
from 0 to 5, whereby a value between 0 and 1 represented a positive effect of complexity on 
operator performance. These values can be seen in Table 16 in the column labeled “SME 
Complexity.” The initial four trials represent normal operations at full power, which the SME 
assigned a nominal complexity value of 1. For the onset of LOOP, the SME raised the 
complexity value to 3. For LOOP and LODG, complexity rose to 4, while for combined LOOP, 
LODG, and LOB, complexity rose to 5.  
 
Negative and positive complexity in SPAR-H are traditionally different for action and diagnosis.  
Positive PSF levels are values less than 1 for a PSF, and specifically for complexity in SPAR-H, 
these are between 0.1 – 1.  It is termed positive complexity because the multipliers decrease the 
HEP.  Then the values equal to or greater than 1 are considered negative. The values 1-5 are 
considered negative complexity because these increase HEP. Some tasks may only experience 
negative complexity, which causes the HEP to always increase. The SME judged that there was 
no part of the scenarios that warranted a positive effect of complexity, and no complexity lower 
than 1 was assigned. 
 
The general form of the complexity equation was applied with the following selected weights: 
 

!"#$%#"&'(!!"#$%&'()*
= 5×!""# + 5×!"#$ + 5×!"# − 0.001×!"#$"%&!'%"
− 0.02×!"#$% 

 

(10) 

This equation produced the “Calculated Complexity” column in Table 16. Note that the negative 
weights on temperature and power denote an inverse relationship between complexity and 
temperature and power—as temperature or power go down, complexity tends to increase.1 This 
results in a negative complexity value for some data instances. Since this calculated complexity 
is only a working number, it needs to be normalized. The calculated complexity values were  
normalized in the range of 1 to 5 to match SPAR-H outputs. These normalized values can be 
seen in the column labeled “Normalized Complexity.” It should be noted that it was decided not 
to apply positive effects of complexity with a value between 0 and 1; hence, the normalization 
had a minimum value of 1. While positive effects for complexity are certainly possible, they are 
outside the scope of the present modeled scenario. 
 
Regressing LOOP, LODG, LOB, temperature, and power against the normalized complexity 
value produced Table 21. Thus, it is possible to produce the specific form of the equation to 
support the SBO scenario: 
 

!"#$%&'()*!!"#$%&'()*
= 1.26754×!""# + 1.26753×!"#$ + 1.26753×!"#
− 0.00025×!"#$"%&!'%" − 0.00507×!"#$% + 1.65116 

(11) 

                                                        
1  This relationship does not always hold true, because high temperature values also indicate a 

plant upset of high complexity. The coefficients should be interpreted as values that produce 
a reasonable approximation to the SME ratings when the calculated complexity is 
normalized. 



Temporal Evolution of Complexity Multiplier 
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Figure 27. Temporal evolution of the complexity multiplier for the stochastic case. 

 
 
 

7.8 Quantifying Operator Performance 
 
Operator performance was quantified as a final HEP value using the GOMS-HRA and SPAR-H 
nominal HEP values. Table 27 below shows the nominal HEP values, the PSF multiplier, and the 
final HEP values for each procedure step modeled in the simulation. SPAR-H and GOMS-HRA 
were both included to support comparisons and reveal any potential discrepancies between the 
two methods. 
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EDG$failure$

Ba0ery$
failure$



Lessons Learned from Automatic PSF Calculation 
Internal vs. External PSFs Matter! 
•  External PSFs are relatively easy to auto-calculate 
– The mapping between context and plant factors and 

operator performance is traceable 
•  Internal PSFs are not so easy to auto-calculate 
– These psychological factors must be input manually 

into the model 
Time is a funny PSF! 
•  GOMS-HRA produces time estimates, which can be 

treated as time-reliability method rather than PSF 
Aggregation of subtask HEPs must still be solved 
•  We have thousands of HEPs generated, but how do we 

combine or average them? 
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What is an HFE? 
ASME defines a Human Failure Event (HFE): 
•  Basic event that represents a failure or unavailability of a component, 

system, or function that is caused by human inaction, or an 
inappropriate action 

While this definition is helpful, it doesn’t articulate: 
•  What tasks constitute a typical HFE 
•  What is the boundary between HFEs 

–  Is it based on the system affected? 
–  Is it based on the goals or tasks being performed by operators? 
–  Are these the same? 



Two Approaches to Defining HFEs/Task 
Decomposition 

•  Ideally, these two 
approaches meet in 
the middle and come 
up with the same set 
of HFEs. 

•  But not always! 



Why Does Task Decomposition Matter? 
Task decomposition shapes the analysis 
•  Unit of analysis changes 

–  e.g., In SPAR-H, a high-level HFE will almost always have 
Diagnosis and Action tasks, but a finer grained analysis will treat 
these separately 

•  Different HEPs result depending on unit of analysis 
–  e.g., Ispra European HRA Benchmark in the late 1980s 

demonstrated that the greatest source of variability between 
analyses was due to different units of analysis 

•  Dependency analysis hinges on the basic units that are interdependent 
–  e.g., original THERP notion of dependency was limited to 

dependency between subtasks within an HFE; yet most 
dependency treatment in HRA now uses THERP dependency 
between HFEs 

Our HRAs are only as good as our definition of what we are 
analyzing 
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Lack of Consistent Task Decomposition 
While all HRA treats HFEs, they do not treat it of define it the same 
• THERP: Detailed subtask analysis using HRA  
event trees 
• SPAR-H: Hey, whatever you want to call an 
HFE is cool with me 
• ATHEANA: Deviation paths 
• EPRI HRA Calculator: The HFE is defined 
in the PRA 
• CREAM: It’s all cognitive, Baby! 
• MERMOS: The wide world of CICAs 
• Etc… 



Each method has its own approach to task decomposition 



The Human Error Probability (HEP) Changes Over Time 

subtask will do so differently. As such, it is often 
convenient to consider the subtasks in terms of win-
dows of time. Hypothetical Tasks A – I are parsed 
across the timeline in Figure 3. Within each subtask 
time window, there is an HEP. This subtask HEP 
may be represented as an averaged single-point sub-
task HEP across each time window or as a function 
representing the distribution of the HEP within each 
subtask (see Figure 4). Additional information such 
as the uncertainty quantification may also accompa-
ny each subtask HEP. 

Note that the joint HEP cannot be calculated be-
fore the entire HFE has been modeled. Even though 
dynamic HRA does not require a predefined event 
tree, it must model all relevant subtask outcomes to 
arrive at the overall HFE. Dynamic generation of 
subtask HEPs does not result in joint HEPs until all  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Hypothetical subtask HEP calculation for a dynamic event progression. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Four types of subtask HEP estimation. 
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HRA Methods Like SPAR-H Produce Different 
HEPs Depending on How You Decompose Tasks 



Sub-Task Modeling 

26 

•  HEP increases as more sub-tasks are added 



This Matters Because Dynamic HRA Uses Subtasks 

Subtask Coupling 
Virtual operator 
actions coupled to 
step-by-step plant 
model 
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Different Ways to Average the HEP within HFEs 
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That? 



Paper Explores Ways of Aggregating HEPs 

Dynamic Generated Data Set for HEPs 
•  Loss of Offsite Power (LOOP) 
•  Loss of Diesel Generator (LODG) 

•  These represent two HFEs 
•  Failure to prepare plant for shutdown 
•  Failure to initiate backup power 

Continuous 
data: What’s 
the HEP for 
these HFEs? 



Two Approaches for Aggregation Considered 
Maximum HEP During the Interval 
•  Inherently conservative—worst case 

•  HEPLOOP = 2.773E-3 
•  HEPLODG = 4.118E-3 
•  Both HFEs have narrow ranges between minimum and 

maximum HEPs 
– HFELOOP [min,max] = 6.288E-6 
– HFELODG[min,max] = 1.070E-4 

•  Conclusion 1: For small ranges, maximum HEP in the 
range is reasonable single point estimate 

•  Conclusion 2: For larger ranges, maximum HEP in the 
range may present a conservative single point estimate 



Two Approaches for Aggregation Considered 
Central Tendency HEP Across the Interval: Median 
•  By definition, media provides single point estimate that falls 

in the middle of the data set 
– Good measure for capturing midpoint even with skews 

•  HEPLOOP = 2.773E-3 
–  Identical to maximum HEP due to narrow range of data 

•  HEPLODG = 4.066E-3 
– Lower than maximum HEP due to broader range of 

data 
•  Conclusion 3: For small ranges, maximum HEP and 

median HEP are similar 
•  Conclusion 4: For larger ranges, median HEP will be 

lower than maximum HEP 



Two Approaches for Aggregation Considered 
Central Tendency HEP Across the Interval: Average 
•  Mean is average value of HEP function over the interval 

– Susceptible to outliers and skews 
•  HEPLOOP = 2.772E-3 
•  HEPLODG = 4.065E-3 
– Slightly lower than median values 

•  Conclusion 5: Average illustrates mathematically tractable 
way to summarize HEP across data range 



Conclusions of Aggregation 
Seemingly Trivial Solutions to a Hard Problem 
•  Conclusion 1: For small ranges, maximum HEP in the 

range is reasonable single point estimate 
•  Conclusion 2: For larger ranges, maximum HEP in the 

range may present a conservative single point estimate 
•  Conclusion 3: For small ranges, maximum HEP and 

median HEP are similar 
•  Conclusion 4: For larger ranges, median HEP will be 

lower than maximum HEP 
•  Conclusion 5: Average illustrates mathematically tractable 

way to summarize HEP across data range 
Additional Data Sets Needed to Scope Best Aggregation 
Technique 
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Does this solve the HEP upward 
creep of subtask modeling? 
Yes, as long as we don’t consider 
dependency! 



Wait…did I just spend 20 minutes telling you to 
take the mean? 

What did I miss? 



What are your ideas for subtask aggregation? 
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