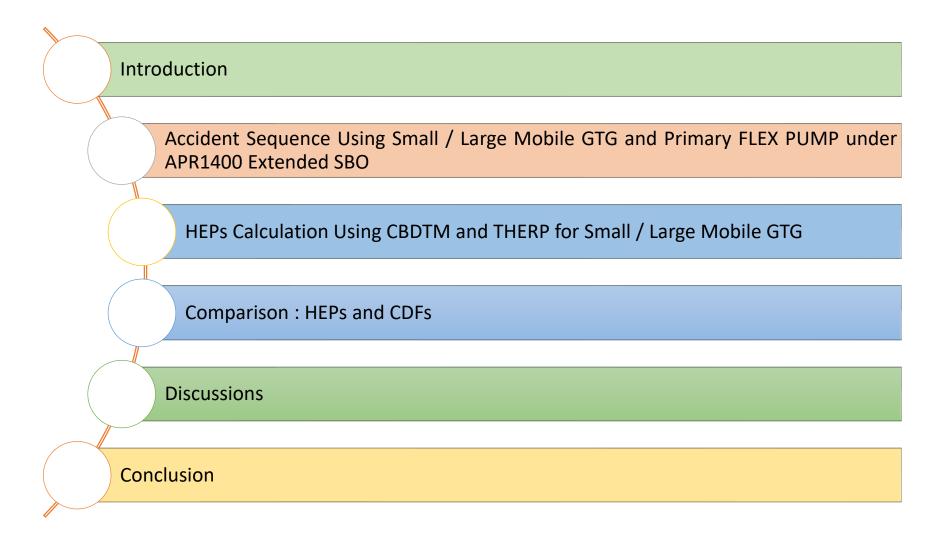


346

A conceptual comparative study of FLEX strategies to cope with extended SBO


Hak Kyu Lim

KEPCO International Nuclear Graduate School (KINGS)

Probabilistic Safety Assessment and Management Conference, PSAM 14, 16-21 September 2018, Los Angeles, CA

Contents

Introduction

- The Fukushima NPP accident in 2011 showed that SBO lasted for several days, the so-called extended SBO, and finally resulted in core damage.
- Since that accident, nuclear industries developed onsite and offsite equipment concept that provides an additional layer of defense in depth, called diverse and flexible mitigation strategies (FLEX).
- The implementation difficulty and effectiveness of various strategies developed for extended SBO may not be same. In this study, two strategies for recovery of electric power using mobile generators are examined.

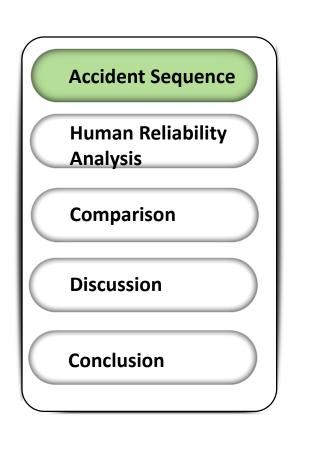
In Korea, KHNP introduced multi-barrier accident coping strategy (MACST). "FLEX" in this presentation means "MACST."

This presentation will give overview on

Accident Sequence

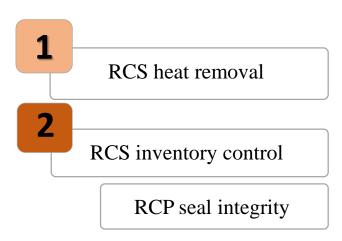
• To cope with APR1400 extended SBO using small / large mobile gas turbine generator (GTG) and primary FLEX pump.

Human Reliability Analysis

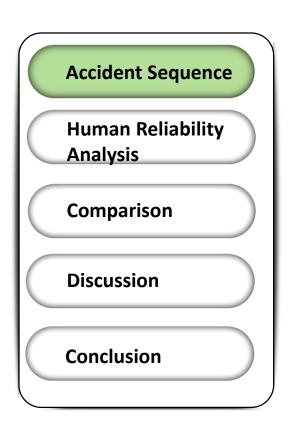

 To calculate HEPs for small mobile GTG and large mobile GTG using Cause-Based Decision Tree (CBDT) and Technique for Human Error Rate Prediction (THERP) methods.

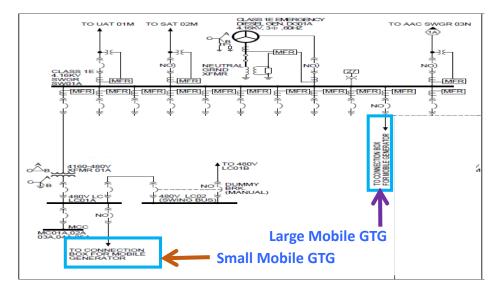
Comparison of HEPs and CDFs

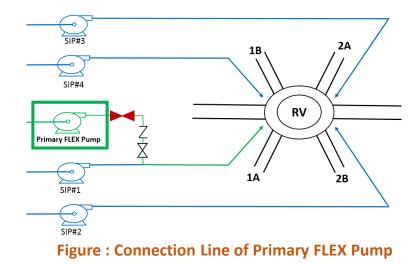
• Comparative study of FLEX strategies with small mobile GTG and large mobile GTG for APR1400 extended SBO, based on core damage frequency.



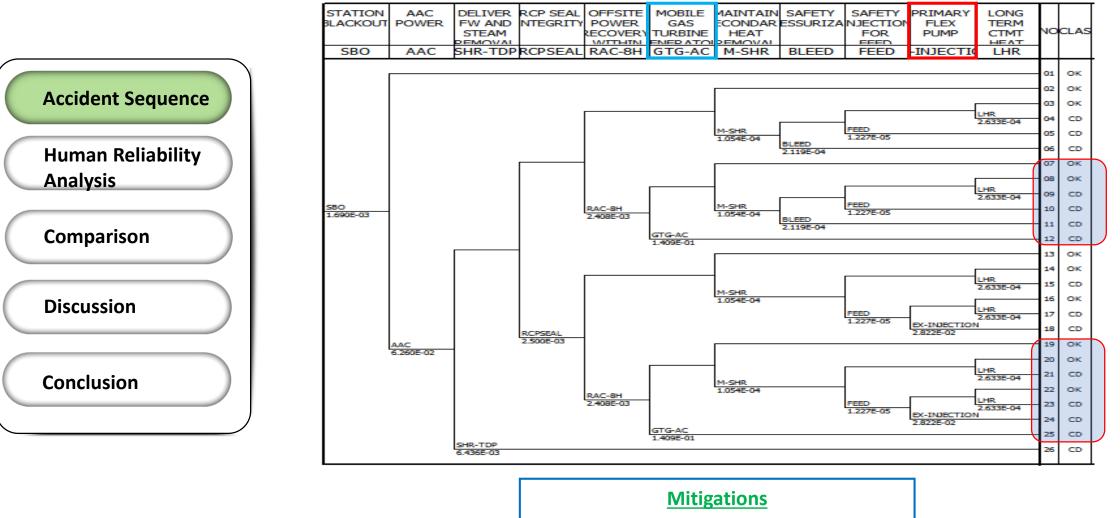
- In the APR1400, extended SBO involves complete loss of ac electric power to the Class 1E and non-Class 1E switchgear buses as well as the failure of a non-Class 1E AAC source.
- Under the extended SBO condition, the only dc battery is available for the turbine driven auxiliary feedwater pump (TDAFWP) which supply water to the steam generator (SG).
- The capacity of dc battery is 8 hours and within this period plant safety needs to be recovered.




Challenges under extended SBO

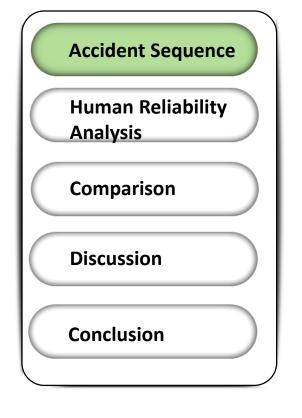


- A small mobile GTG could be connected to class 1E 480V ac bus to recover dc power for maintaining secondary heat removal when TDAFWP are unavailable after battery depletion.
- A large mobile GTG could be connected to one division of the 4.16 kV class 1E buses and the purpose is to recover ac power to maintain the secondary heat removal, feed and bleed operation and containment heat removal.
- One primary FLEX pump could be connected to direct vessel injection (DVI) via the safety injection (SI pump) line to inject borated water into the core to maintain RCS seal integrity.


Figure: Connection point of Mobile Generators

Event Tree: Large GTG

Figure: Event Tree for Extended SBO Using Large Mobile GTG and Primary FLEX Pump


- ac power recovery
- RCS make up by Primary FLEX Pump

Success Criteria: Large GTG

Table : Success criteria for Extended SBO using Large Mobile GTG and Primary FLEX Pump

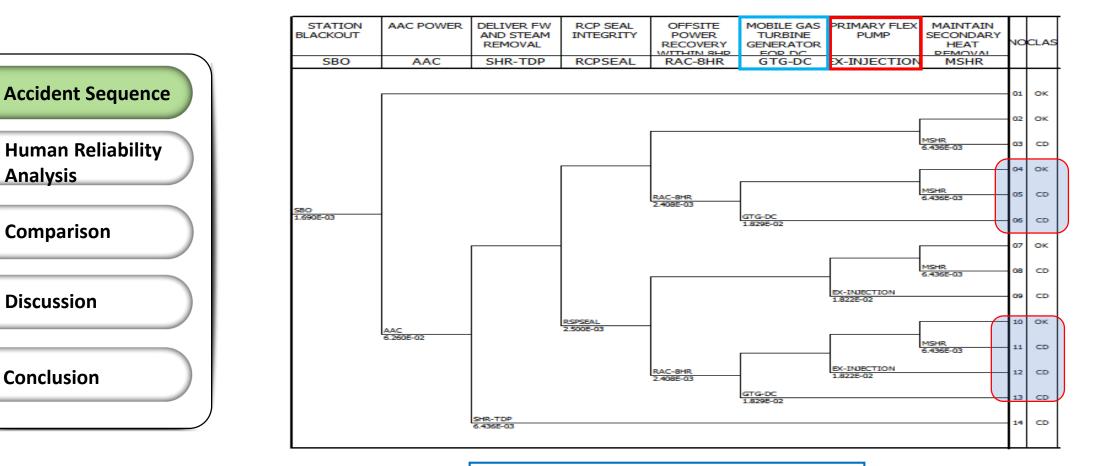
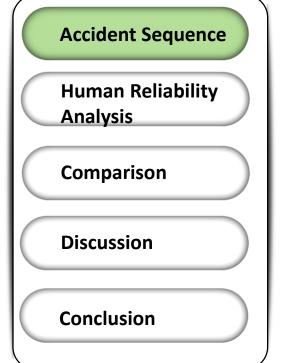

No	Event Name	Description
1	AAC	AAC power source aligned to one Class 1E 4.16 kV ac bus.
2	SHR-TDP	1 of TDAFPs to associated SG and 1 MSADV or 1 MSSV on associated SG.
3	RCPSEAL	RCP seal remains intact.
4	RAC-8HR	Offsite power restored within 8 hours following an LOOP event.
5	GTG-AC	AC power resorted within 8 hour following battery depletion which is aligned to 4.16 kV safety class 1 AC bus.
6	M-SHR	AFW flow from AFWST after depletion of battery to associated SG and 1 MSADV or 1 MSSV on associated SG.
7	BLEED	2 of 4 POSRVs need to open.
8	FEED	1 of 4 SI pumps provides DVI injection.
9	EX-INJECTION	Primary FLEX pump injects sufficient water to RCS inventory.
10	LHR	1 of CS (containment spray) pumps to associated CS nozzle or 1 of SC (shutdown coo ling) pumps to associated IRWST cooling.

Figure: Simplified Event Tree for Extended SBO Using Small Mobile GTG and Primary FLEX Pump

Mitigations


- dc power recovery
- RCS make up by primary FLEX pump

Success Criteria: Small GTG

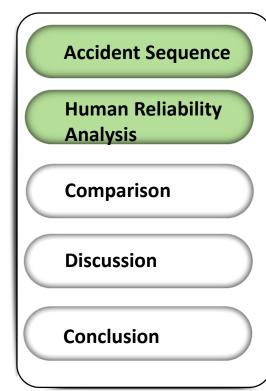
Table : Success criteria for Extended SBO Using Small Mobile GTG and Primary FLEX Pump

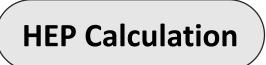
No	Event Name	Description
1	AAC	AAC DG power source aligned to one Class 1E 4.16 kV ac bus.
2	SHR-TDP	1 of TDAFPs to associated SG and 1 MSADV or 1 MSSV on associated SG.
3	RCP SEAL	RCP Seal remains intact.
4	RAC-8HR	Offsite power restored within 8 hours following an LOOP event.
5	GTG-DC	dc power restored within 8 hrs following battery depletion.
6	EX-INJECTION	Primary FLEX pump injects sufficient water to RCS inventory.
7	M-SHR	AFW flow from AFWST after depletion of battery to associated SG and 1 MSA DV or 1 MSSV on associated SG.

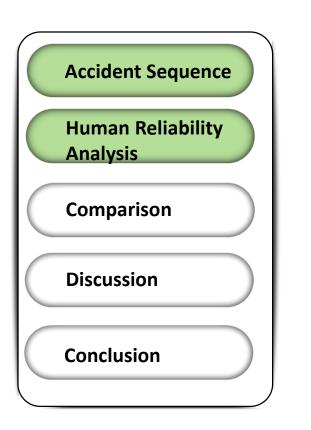
FLEX Procedures

 Table : Proposed FLEX deployment and installation procedures

	Step No.	Description of Actions				
	Step 01	Diagnose the plant abnormal conditions and perform abnormal procedure guideline.				
	Step 02	Verify reactor trip occurrence and perform post trip actions.				
Accident Sequence	Step 03	Check LOOP occurrence and perform emergency operating procedures				
	Step 04	If the operator fails to activate EDG, then declare an SBO				
Human Reliability	Step 05	Operator check AAC DG availability. If not available extended SBO is declared.				
Analysis	Step 06	Operator load sheds dc bus to preserve battery for vital instrumentation & control				
	Step 07	STA may instruct the operator to deploy and install FLEX equipment.				
Comparison	Step 08	FLEX equipment deployment route are reviewed.				
companison	Step 09	Deployment of mobile GTG in front of the auxiliary building.				
	Step 10	Operator checks status of the circuit.				
Discussion	Step 11	Connect powerline from mobile GTG to class 1E bus.				
	Step 11-a	Perform pre-operational check of large GTG.				
	Step 12	Energize mobile GTG.				
Conclusion	Step 13	Check procedure if the vital bus is not restored				
	Step 14	Deployment and staging of primary FLEX pump.				
	Step 15	Connect primary FLEX pump to IRWST line				
	Step 16	Connect primary FLEX pump hose line to SI injection line via DVI.				
	Step 17	Perform pre-operational check for primary FLEX pump.				
	Step 18	Start primary FLEX pump.				
	Step 19	Check procedure if RCS inventory is not recovered.				




After 8 hours from the start of SBO, the mobile GTG is required unless offsite power recovery.



- T_{delay} = 90 mins. Delay time includes diagnose the situation and begin the deployment of the mitigating strategies equipment, measured from the time of SBO.
- $T_{cog} = 4$ mins. Cognition time includes the time for operators to receive enough indication, evaluate the
 - written instructions, and take any necessary preparatory decision to begin the deployment actions.
- $T_{exe} = 150$ mins. Execution time which includes FLEX equipment transportation, installation, start and repower the vital buses along with inclement weather.
- $T_w = 236$ mins. Time available for recovery.

- Human failure events, namely operator fails to deploy and install a small GTG, a large GTG and primary FLEX pump under APR1400 extended SBO, were considered to calculate human error probabilities, HEPs.
- Cognitive portion of HEPs (P_{cog} & P_{CR}) were calculated using CBDTM.
- Execution portion of HEPs ($P_{exe} \& P_{ER}$) were calculated using THERP.

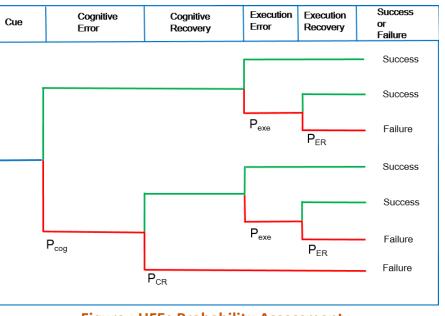


Figure : HFEs Probability Assessment

P_{cog}: Cognition HEP, P_{exe}: Execution HEP, P_{CR}: Cognitive Recovered HEP and P_{ER}: Execution Recovered HEP

Cognition Error Probability

Table: Cognitive HEP without recovery, $\mathbf{P}_{\mathrm{cog}}$

	CBDTM Failure Mechanism	Branch	НЕР							
	p _c a : Availability of information	а	0.0							
	Notes: Operator can access to all information and required indication to operate a plant i	n the main control room (I	MCR).							
	p _c b : Failure of attention	m	1.5×10 ⁻²							
Accident Sequence	Notes: In general, within 2 hours from SBO initiation, the workload is assumed to be high. It may be necessary to monitor parameters and indicators continuously rather than one time check under SBO. It's is assumed that the indicator to be checked is always displayed on the front panel of the MCR because all of the controls in the modern control room are expected to be located in the front of the room. It is also predicted that operators concentrate on emergency operating guideline (EOG) and performs EOG-driven actions after the reactor trip. Thus, operators cannot wait for alarms to respond until the related parameter are mentioned in the EOG step.									
Human Reliability	p _c c : Misread/ miscommunicate data	а	0.0							
Analysis	Notes: It is assumed that required indicator on the control board such as layout, dema	-								
	advanced digital I&C interface in the MCR, the indication is assumed to be "good". It also		, ,							
Commention	when the specified value is transferred between operators.									
Comparison	p _c d : Information misleading	b	3.0×10 ⁻³							
	Notes: All cues are not as stated for these HFEs and the EOG may provide contingency actions which are instructions on how to proceed.									
	p _c e : Skip a step in procedure	g	6.0×10 ⁻³							
Discussion	Notes: It's assumed that it's always transparent for operators to proceed with the relevant instruction or stand-alone numbered step on the EOGs. The operator is required to use an additional procedure in addition to the EOG, so "multiple" branch is selected for these HFEs. For this operator action, related procedure step is "not graphically distinct".									
	p _c f : Misinterpret Instruction	а	0.0							
Conclusion	Notes: It is generally assumed that the wording of the procedures will be standard, clear. The step presents all information required to identify the actions directed and their objects.									
	p _c g : Misinterpret decision logic	а	1.6×10 ⁻²							
	Notes: It is assumed that the operators are trained and practiced about specified scenario to perform.									
	p _c h : Deliberate Violation a 0.0									
	Notes: The operators are always assumed to believe in the adequacy of instruction preser	nted.								
	Initial P _{cc}	og (without recovery)	4.0×10 ⁻²							

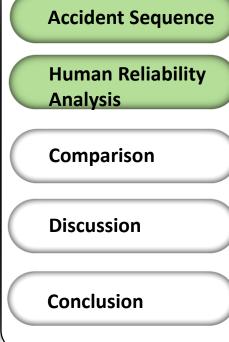
Recovery of Cognition Error

Table: Cognitive recovered, P_{CR}

- Shift Technical Adviser (STA) review is possible
to recover failure of attention (p_cb) , information
misleading (p_cd) and misinterpret decision logic
 (p_cg) . In addition, the extra crew can review the
steps in the procedures (p_ce) .BP_ca p_ca P_cb p_cb p_cc p_cd
- For an initial estimate, a value of 0.1 was used.

٠

.


•

For complete independence, the factor is the HEP itself (p_c e case).

	Branch	Initial HEP	Self- Review	Extra Crew	STA Review	Shift Change	ERF Review	DF Multiply By		Final Value
p _c a	а	0.0	NC	0.5	NC	Х	Х		1.0	0.0
p _c b	m	1.5×10 ⁻²	0.1	NC	0.1	Х	Х	MD	0.16	2.4 ×10 ⁻³
p _c c	а	0.0	NC	NC	0.1	Х	Х		1.0	0.0
p _c d	b	3.0×10 ⁻³	NC	0.5	0.1	Х	Х	MD	0.15	4.5 ×10 ⁻⁴
p _c e	g	6.0×10 ⁻³	0.1	0.5	NC	Х	Х		0.5	3.0 × 10 ⁻³
p _c f	а	0.0	NC	0.5	0.1	Х	Х		1.0	0.0
p _c g	а	1.6×10 ⁻²	NC	0.5	0.1	Х	Х	MD	0.16	2.6 ×10 ⁻³
p _c h	а	0.0	NC	0.1	0.1	Х	Х		1.0	0.0
		Sum of reco	overed p _c a	through	p _c h = Tota	al of cogniti	ve recover	ed P _{CR}		8.45 ×10 ⁻³

For $p_c a$, $p_c c$, $p_c f$, & $p_c h$, we multiplied the initial HEPs by 1 as no recovery factors are identified.

- The dependency factor (DF) was increased from zero dependence (ZD) to moderate dependence (MD). This is because MD is usually assessed between the shift technical advisor (STA) and the operators for tasks in which the STA is expected to interact with them.
- For $p_c b$, $p_c d$ and $p_c g$ decision trees, the conditional HEPs values for MD were calculated using failure equation $Pr[F_{"N"}|F_{"N-1"}]$
 - = (1+6N)/7 which represent probabilities of failure on Task "N" given failure on the immediately preceding task, "N-1".

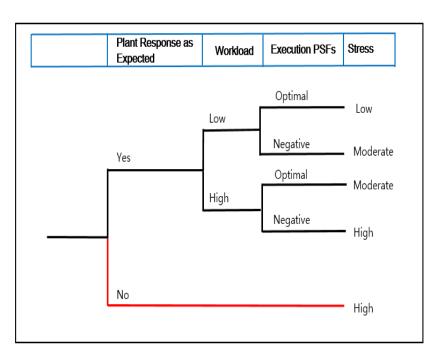


Table : THERP Execution per	rformance shapin	ng factors
Environment	Lighting	Portable

	0 0	
	Heat/humidity	Hot/Humid
	Radiation	Green
	Atmosphere	Normal
Special Requirements	Tools	Required
	Parts	Required
	Clothing	Available
Complexity of response	Execution	Complex
Equipment Accessibility	Main control	Accessible
(Cognitive)	room	
Equipment Accessibility	Auxiliary	Accessible
(Execution)	Building	

Figure : THERP stress decision tree

The execution stress level was considered high and modifier 5 value was used.

Execution Error Probability

Table : P_{exe} without recovery for small mobile GTG

Table : Execution recovered, P_{ER} for small mobile GTG

	Procedure		TI		RP				Critical	Recover	Action	НЕР	НЕР	DF.	Cond. HEP	Total for				
	Step	Action	Error type	Table	Item	HEP	Stress factor	Total Step HEP	Step No	Step No	Action	(Critical)	(Rec)		(Recovery)	Step				
	No.	Action		Table	Item				09		Deployment of small GTG in	8.59×10 ⁻³				1.68×10 ⁻⁵				
Accident Sequence		Deployment of small GTG	EOM	20-7b	1	4.17×10^{-4}	High		09		front of auxiliary building.	8.59×10 ⁻³				1.08×10 ⁻⁵				
Human Reliability	09	in front of auxiliary building.		20-13	1	1.3×10 ⁻³	High	8.59×10 ⁻³		13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³					
Analysis		Operator	EOM	20-7	2	3.75×10 ⁻³	High		10		Operator checks status of circuit.	2.53×10 ⁻²				4.95×10 ⁻⁵				
Comparison	10	1		High	- 2.53×10 ⁻²		13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³								
	11	Connect powerline to 480V for	EOM	20-7b	2	1.25×10 ⁻³	High	7.13×10 ⁻²	11		Connect powerline to 480V for small	7.13×10 ⁻²				1.40×10-4				
Discussion		small GTG.	EOC	20-12	13	1.30×10 ⁻²	High				GTG.									
		Energize	EOM	20-7b	2	1.25×10-3	High			13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³					
Conclusion	12 mobile si GTG.	mobile small GTG.	EOC	20-12	11	6.3×10 ⁻³	High	3.78×10 ⁻²	12		Energize mobile small GTG.	3.78×10 ⁻²				7.40×10 ⁻⁵				
	13 1	12	12	13	12	procedure if	EOM	20-7b	2	1.25×10 ⁻³	High	1.28×10 ⁻²		13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³	
	15	vital bus is not restored	EOC	20-11	2	1.3×10 ⁻³	High	1.20.10		Total Unrec	overed, P _{exe}	1.43×10-1	Total	Recove	r ed, P _{ER}	2.80×10-4				

The calculated P_{exe} without recovery and execution recovered, P_{ER} for small mobile GTG values are 1.43×10^{-1} and 2.8×10^{-4} respectively.

Execution Error Probability

Table : P_{exe} without recovery for large mobile GTG

Table : Execution recovered, P_{ER} for large mobile GTG

	Procedure			THERP					Critical					Cond.	Cond.			
	Step No.	Action	Error type	Table	Item	НЕР	Stress factor	Total Step HEP	Step No.	Recovery Step No.	Action	HEP (Critical)	HEP (Rec)	DF	HEP (Recovery)	Total For Step		
Accident	09	Deployment of large GTG in	EOM	20-7b	1	4.17×10 ⁻⁴	High	0.50 103	09		Deployment of large GTG in front of auxiliary building	8.59×10 ⁻³				1.68×10 ⁻⁵		
Sequence		front of auxiliary building	EOC	20-13	1	1.3×10 ⁻³	High	8.59×10 ⁻³		13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³			
Human Reliability	10	Operator checks	EOM	20-7	2	3.75×10 ⁻³	High	2.53×10 ⁻²	10		Operator checks status of circuit.	2.53×10 ⁻²				4.95×10 ⁻⁵		
Analysis		status of circuit.	EOC	20-10	6	1.3×10 ⁻³	High			13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³			
Comparison	11	11	11	Connect powerline to class	EOM	20-7b	2	1.25×10 ⁻³	High	7.13×10 ⁻²	11		Connect powerline to class 1E 4.16kV for	7.13×10 ⁻²				1.40×10 ⁻⁴
		1E 4.16kV for large GTG.	EOC	20-12	13	1.30×10 ⁻²	High	,			large GTG.							
		Perform pre-	EOM	20-7b	1	4.17×10-4	High			13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³			
Discussion	11-a	operational checking of large GTG.	EOC	20-12	11	6.30×10 ⁻³	High	3.36×10 ⁻²	11-a		Perform pre-operational checking of large GTG.	3.36×10 ⁻²				6.59×10 ⁻⁵		
			EOM	20-7b	2	1.25×10 ⁻³	High			13	Check procedure if vital bus is not restored		1.28×10-2	MD	1.96×10 ⁻³			
Conclusion		Energize mobile large GTG.	EOC	20-12	11	6.3×10 ⁻³	High	3.78×10 ⁻²	12		Energize mobile large GTG.	3.78×10 ⁻²				7.40×10 ⁻⁵		
	-	Check procedure	EOM	20-7b	2	1.25×10 ⁻³	High			13	Check procedure if vital bus is not restored		1.28×10 ⁻²	MD	1.96×10 ⁻³			
	13	if vital bus is not restored	EOC	20-11	2	1.3×10 ⁻³	High	1.28×10 ⁻²	Total Unre		ecovered, P _{exe}	1.76×10 ⁻¹	Total	Recovere	e d, P _{er}	3.46×10 ⁻⁴		

The calculated P_{exe} without recovery and execution recovered, P_{ER} for large mobile GTG values are 1.76×10^{-1} and 3.46×10^{-4} respectively.

Comparison of HEPs

Table : Comparison of HEP Results

		HEP Re	sults Summary							
			P _{cog}	P _{exe}	Total HEP					
Accident Sequence		Without Recovery	4.0×10 ⁻²	1.43×10 ⁻¹	0.7240.3					
Human Reliability	Small Mobile GTG	With Recovery	8.45×10 ⁻³	2.80×10 ⁻⁴	8.73×10 ⁻³					
Analysis		Without Recovery	4.0×10 ⁻²	1.76×10 ⁻¹	0.00.10.2					
Comparison	Large Mobile GTG	With Recovery 8.45×		3.46×10 ⁻⁴	8.80×10 ⁻³					
companison										
Discussion	NEI 16-06 Guide HEP Results Summary									
		Without Recovery	2.0×10 ⁻³	1.18×10 ⁻¹						
Conclusion	FLEX Generator	With Recovery	2.9×10 ⁻⁴	5.06×10 ⁻³	5.35×10 ⁻³					
			2.3 ~ 10	5.00 ~ 10						

(Assumed) BE Data

- There is no failure data available for portable equipment while there are sources of generic failure rates for permanently-installed equipment at NPPs.
- In this study, failure probability of diesel generator and combustion turbine generator are used as failure probability of a small mobile GTG and a large mobile GTG, respectively.

Basic Event	Description	Probability	Data Source
EIEPL-S-PP01	Portable pump fails to load run	9.80×10 ⁻⁴	Component Reliability Data Sheets 2015 Update (Table 2-10)
EIEPM-S-PP01	Portable pump unavailable due to maintenance	7.51×10 ⁻³	NUREG/CR- 6928 (Table 6-1)
EIEPR-S-PP01	Portable pump fails to run	1.98×10 ⁻³	Component Reliability Data Sheets 2015 Update (Table 2-10)
EIEPS-S-PP01	Portable pump fails to start	2.17×10 ⁻³	Component Reliability Data Sheets 2015 Update (Table 2-10)
EIMP-PP01HOSE	Failure to Portable pump hose	5.89×10 ⁻⁶	SAND 2006-7723
GTTGL-L-GTG	Large GTG fail to run for 1hr	5.79×10 ⁻³	Component Reliability Data Sheets 2015 Update (Table 38)
GTTGM-L-GTG	Large GTG unavailable due to maintenance	5.00×10 ⁻²	NUREG/CR-6928 (Table 6-1)
GTTGR-L-GTG	Large GTG fail to run	8.49×10 ⁻³	Component Reliability Data Sheets 2015 Update (Table 3-8)
GTTGS-L-GTG	Large GTG fail to start	5.12×10 ⁻²	Component Reliability Data Sheets 2015 Update (Table 3-8)
GTBSY-S-SW01	AC bus faults switchgear of GTG	9.55×10 ⁻⁷	Component Reliability Data Sheets 2015 Update (Table 5-19)
GTBSY-P-SW01	DC bus faults switchgear of GTG	2.17×10-7	Component Reliability Data Sheets 2015 Update (Table 5-19)
GT-GTG- REEL	Failure of large GTG reel cable	1.20×10-6	NUREG/CR-3263
GTOPH-S-GTG	Operators fails to provide 1E class DC bus	5.35×10 ⁻³	NEI-16-06
GTTGL-S-GTG	Small GTG fails to run for 1 hr	3.72×10 ⁻³	NUREG/CR- 6928
GTTGS-S-GTG	Small GTG fails to start	2.88×10 ⁻³	NUREG/CR- 6928
GTTGM-S-GTG	Small GTG unavailable due to maintenance	1.34×10 ⁻³	NUREG/CR- 6928
GTTGR-S-GTG	Small GTG fails to run	1.52×10 ⁻³	NUREG/CR- 6928
GT-SGTG-REEL	Failure of Small GTG cable reel	4.00×10 ⁻⁸	NUREG/CR- 3263

Table : Basic Event Data Considered for FLEX Strategies

Discussion

Comparison

Analysis

Accident Sequence

Human Reliability

Conclusion

Comparison of CDFs

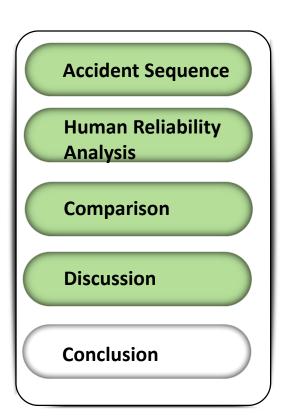
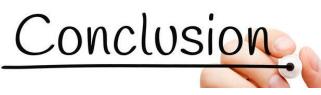

Table : CDF Contribution using large mobile GTG

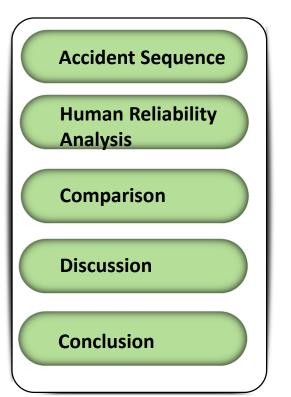
Table : CDF Contribution using small mobile GTG

	Sequence Number	Sequence	CDF Contribution (events/year)		equence umber	Sequence	CDF Contribution (events/year)
Accident Sequence	ESBO- 05	(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal intact)(success of recovery offsite power within 8 hours)(failure to maintain secondary heat removal)(Safety dep. For bleed OK)(safety injection for feed fails)	6.48×10 ⁻¹⁴	ES Of	SBO- 6	(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal intact)(failure of recovery offsite power within 8 hours)(failure of mobile GTG for dc power recovery)	7.00×10 ⁻⁹
Human Reliability	ESBO- 06	(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal intact)(success of recovery offsite power within 8 hours) (success of mobile GTG for ac power recovery)(failure to maintain secondary heat removal)(Safety dep. For bleed fails)	1.03×10 ⁻¹⁰	ES 09	SBO- 9	(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal leakage)(success of recovery offsite power within 8 hours)(failure of primary injection of RCS inventory by primary FLEX pump)	7.52×10 ⁻⁹
Analysis Comparison	ESBO- 11	(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal intact)(failure of recovery offsite power within 8 hours)(failure to maintain secondary heat removal)(Safety dep. For bleed fails) (SBO)(failure of AAC)(successful delivery of feedwater	1.49×10 ⁻¹³	ES 12		(SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal leakage)(failure of recovery offsite power within 8 hours)(success of mobile GTG for dc power recovery)(failure of primary injection of	1.11×10 ⁻¹¹
Discussion	ESBO- 12	using turbine driven pumps)(RCP Seal intact)(failure of recovery offsite power within 8 hours)(failure of mobile GTG for ac power recovery) (SBO)(failure of AAC)(successful delivery of feedwater	3.72×10 ⁻⁸	ES 13	SBO- 3	RCS inventory by primary FLEX pump) (SBO)(failure of AAC)(successful delivery of feedwater using turbine driven pumps)(RCP Seal leakage)(failure of recovery offsite power within 8 hours)(failure of mobile GTG for dc power recovery)	1.74×10 ⁻¹¹
	ESBO- 25	using turbine driven pumps)(failure of RCP Seal)(failure of recovery offsite power within 8 hours)(failure of mobile GTG for ac power recovery)	9.29×10 ⁻¹¹	ES 14	SBO- 4	(SBO)(failure of AAC)(failure of delivery of feedwater using turbine driven pumps	6.93×10 ⁻⁷
Conclusion	ESBO- 26	(SBO)(failure of AAC)(failure to delivery of feedwater using turbine driven pumps)	6.93×10 ⁻⁷			Total	7.08×10 ⁻⁷
		Total	7.30 ×10 ⁻⁷				

- Based on these comparative study results, the CDF of an extended SBO with a small mobile GTG, 7.08×10⁻⁷/year is almost same as the CDF of an extended SBO with a large mobile GTG, 7.30×10⁻⁷/year.
- The frequency sequences of ESBO-12 of large GTG is 5 times higher than frequency sequences of ESBO-06 of small GTG.



• At the present time, there are deficient data and procedures of FLEX that may affect the HEP calculation.


Discussions

- Due to lack of information as well as experience on FLEX equipment, only step 11-a for large GTG is considered differently from small GTG case. It makes small difference between HEPs as well as CDFs. It could not be realistic to suggest now which portable GTG is more useful.
- However, the error probabilities of step 9 to 13 for large GTG and small GTG would be different because the difficulties of deployment and operation of mobile GTGs are not same.
- It is obligatory to develop precise procedures if we want to get more accurate HEP results.

• Even though there is no PRA, the decrease of CDF when FLEX strategy is implemented should be obvious.

- Because of lack of information of FLEX strategy, currently, it is not effective to perform PRA of NPP with FLEX strategy, for showing how much decrease of CDF could be achieved after FLEX strategy implementation.
- To develop optimized FLEX strategy implementation, such as optimization the use of portable equipment under beyond design basis accidents, the detailed information and experiences related to FLEX strategy are required.
- On the other side, there may also require to address any inadvertent consequences due to the implementation of FLEX equipment like impact to the existing plant design bases, physical & cyber security, etc.

References

- [1] NEI 12-06, Rev.4, Diverse and Flexible Coping Strategies (FLEX) Implementation Guide, 2016
- [2] NEI 16-06, Rev.0, Crediting Mitigating Strategies in Risk-Informed Decision Making, 2016
- [3] M.G. Shahinoor Islam, Lim Hak-kyu, Comparative Study of FLEX Strategies for Extended SBO Using PRA, KINGS, 2017
- [4] KINGS/PR-SEP02-2018-06, HEPs Calculation for FLEX Strategies in Response to APR1400 Extended SBO, KINGS, 2018
- [5] APR1400 DCD Tier 2, Chapter 8, Electric Power, 2014
- [6]U.S.NRC NUREG/CR-1278, Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, 1983
- [7] EPRI TR-100259, An Approach to the Analysis of Operator Action in Probabilistic Risk Assessment, EPRI, 1992
- [8] Prof. Chang Choong-koo, On-site FLEX Equipment, KEPCO International Nuclear Graduate School, 2018
- [9] The EPRI HRA Calculator Software Manual, Version 5.0 Demo, 2013
- [10] Thomas Zachariah, Using FLEX Equipment and Risk-Informed Decision Making to Maximize Safety, Regulatory Information Conference, 2017