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Acronyms and Terms

¢jk — separation distance between locations j and k

€ — intra-event variability

+ 02 -variance of ¢

1 — inter-event variability
* o7 -variance of

A(SA™ > sa™) - annual rate of exceedance

Am - rate of earthquakes with magnitude greater than m
AF (f) — amplification factor at frequency f

CCDP - conditional core damage probability

Loc — earthquake location

M or m — earthquake magnitude

MUPRA — multi-unit probabilistic risk assessment
MURM — multi-unit risk metric

NPP — nuclear power plant

PGM — probabilistic graphical model

PRA — probabilistic risk assessment

PSA — probabilistic safety assessment

PSHA — probabilistic seismic hazard analysis

R or r — earthquake source-to-site distance

SA(f) — spectral acceleration at frequency f

SAJT — spectral acceleration at bedrock for location j

SAj, — spectral acceleration at bedrock for location k
Oln(say) - Standard deviation of In(SA4})

SA; — spectral acceleration at soil for location j

SAj, — spectral acceleration at soil for location k

ASAj - difference of the natural logarithms of SA4;
and 'S4y

*  Hasay - mean of ASAjy
* Opsay, - standard deviation of ASAj;

Source — earthquake source
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Problem Statement

* Fukushima Daiichi accident demonstrated the importance of accidents
involving multiple units and highlighted the need for considering multi-unit
accidents as part of a PRA.

* In order to properly understand the risk at a multi-unit NPP site, one must
account for the dependencies among the units

* Schroer and Modarres [1] classification schema = earthquakes classified as definite
initiating events, i.e., they will affect always affect multiple units

* Unit-by-unit basis of performing PRA

* Analyst performing a multi-unit seismic PRA assumes that the same ground motion
intensity is experienced by all the units at the NPP site (i.e., perfect correlation)

* Analyst assumption is not realistic because, at a NPP site scale, there is
spatial variability in the ground motion due to various factors.




Research Objective

* The overall objective of this research is to develop a method that

allows the inclusion of the spatial variability of ground motions at a
NPP site for use in a seismic MUPRA.

* Method should be tractable and practical.
* Method should use existing PSHA results.

 This will be achieved by

e characterizing the spatial variability of ground motions,

* integrating the model of ground motion variability with the results of existing
PSHA results, and

* developing a method that allows the spatial ground motion variability to be
addressed in a seismic MUPRA.
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Scales e

* Based on the idea that ground motions vary on a structural, site/local,
and regional scales

Regional scale > multi-site PRA

Site scale = multi-unit PRA

Structure scale - single-unit PRA

| Scale | __Range |

Structure Up to 150 m
Local/Site 150 m to 1 km

Regional >1 km




Distance Between U.S. NPP Units

PaloVerdel,3
PaloVerde2,3
PaloVerdel,2
BeaverValley
SouthTexas
Millstone
Vogtle
St.Lucie
DiabloCanyon
NorthAnna
Catawba

Site

ComanchePeak
Farley
WattsBar
Braidwood
Surry

Limerick

Hatch

o

100

200 300 400 500 600

Separation Distance between Units (m)

700

800




Spatial Variability of Ground Motions

 Definition: “the differences in the amplitude and phase of seismic
ground motions recorded over extended areas.”

(a) Scattering Effect
1

2

Scatterer

Seismic Source

Figure adapted from: Zerva (2009) [2]




Probabilistic Seismic Hazard Analysis ~ “«*=
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Figure credit: Baker, J.W. (2008), “An Introduction to [PSHA].” [3]

(a) Identification of earthquake sources

(b) Characterize distribution of earthquake magnitude from each source

loge A = a—b _ bIn(10) 10~20m=Mmin)
08104m = a— bm fM(m) - 1 — 10-PMmax—Mmin)

(c) Characterize distribution of source-to-site distances from each source

(d) Predict distribution of ground motion parameter (e.g., PGA or SA(f))
In(SA™()) =gmr)+n+e
In(sa™) — g(m,r)

{ 2 2
oy +0¢

(e) Compute annual rate of exceeding a given value of a ground motion parameter

P(SA" >sa"lm,r)=1—-®

Nsources ny Ng
A(SAT > sa”) = Z (Am),-z Z P(SA™ > sa"|m;, 1) P(M; =m;) P(R; = 13.)
i=1 j=1k=1

For soil sites, modify the rock hazard curve (above) with site-specific amplification factor [4,5]

SAS
AF(f) = Sa¢)
SAT(f)
S S Sas r r r
P(SAS > sa®) = Z P AF >y|saj P(SA =saj)
all sa”;
]
PSHA results are provided for a “control point” elevation at the site (e.g., reactor 8

building foundation) [6]



Disaggregation of the Seismic Hazard

Latitude: 39.047°N, Longitude: 77.112°W

Spectral Period: PGA, Acceleration = 0.054g

Return Period: 2,475 years

Mean (M, R, €0): 565, 64.91km, -0.130c

Mode (largest M-R bin) (M, R, €0): 4.9, 14 92km, -1_40

% contribution: 6.06%

Mode (largest €0 bin) (M, R, £0): 4.89, 29.95km, 0.21c
% contribution: 1.99%

Binning: AM = 0.2, AR = 20km, Asoc = 0.50
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ASA™ > sa", M =m) 7
A(SAT > sa”)

P(M = m|SA" > sa") =

B

Nsources nR
A(SA” >sa",M =m) = Am)i Z P(SA” > sa"|m,r,) P(M; =m) P(R; = 1y)
i=1 k=1

Figure credit: https://earthquake.usgs.gov/hazards/interactive/




Existing Work

» Spatial Correlation of Intra-Event Variabilities [7]

pe(§,Ty) = exp(—asF)
* Developed using regional ground motion databases
* |f used in seismic MUPRA, correlation will be close to 1.0

* Spectral Amplitude Variability [8]
ASAji () = In|SA; ()] — In[SA(f)]

Hasa (f) = 0

O-ASAjk(M' f]k'f) = Cl(f’ M)(l — exp{_flk Cz(f)})
ASAjx~N(0,0asa;,)
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Brief Background on PGMs

* A PGM provides a representation of the probabilistic dependence
among random variables and their jo7i1nt distribution

le,Xz,...,Xn (X1, X2, ey X)) = l_Iin|pa(Xl-)(xi|pa(xi))
i=1
* Example PGM W

fxox,x5%, (X1, %2, %3, %4) = fx, (1) fx 10, (c21%1) fxgix, (31x1) feyxyx, (alx1, x2)

* Once the joint distribution is established, any joint, marginal, or
conditional distribution can be calculated.
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Proposed Framework
General Ground Motion Variability Model

PGM representation and illustration of variables

Top view

Control hazard point

Earthquake source

Rock M, Loc T

12



Proposed Framework
General Ground Motion Variability Model

PGM representation and illustration of variables

Side view
(i.e., looking through Earth)

Control hazard point

Unit k

In(S43)
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Proposed Framework
Streamlined Ground Motion Variability
Model

PGM representation and illustration of variables

Unit k
: In(S43)

In(SA},)
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Proposed Framework for MUPRA Metrics >

Rock Site Gr'our.u?l motion Soil Site Ground motion
variability model variability model
N
(except ln(SA]- )and (except ln(SAjs) and

In(SA})) In(SAR))

R’?gzllt;l_;?ilcts Multi-Unit
Risk Metrics

P(MURM) = Z Z Z z P(In(SAL))P(In(SAT) | In(SA}))P(CCDP, | In(SAL))P(CCDP| In(SAT), CCDP,)P(MURM|CCDP;, CCDP,)

ln(SA;) ln(SA;) CCDPy CCDP;

P(MURM) = Z Z Z z P(In(SA))P( | In(SA}))P(CCDPy|In(SA))P(CCDP;| In(SAS),CCDPy, )P(MURM|CCDP;, CCDPy,.)

In(SA},) In (5 A§) CCDPy CCDPj .
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Conclusion

* Developed a framework for modeling ground motion variability across
a NPP site for use in a seismic MUPRA.

* Next steps

* Develop ground motion variability model for different site conditions (i.e.,
rock or soil) and obtain conditional distribution of the ground motion hazard
at a non-reference location given the reference (or “anchor”) ground motion
hazard. For example,

P(In(SAT) | in(SA}))

* Test the ground motion variability model using the results of a PSHA from a

hypothetical site.
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