

SVM Classification for drowsiness detection using eye aspect ratio

C.S. Maior, Márcio das Chagas Moura, E.L. Droguett et al. CEERMA - Center for Risk Analysis, Reliability and Environmental Modeling Federal University of Pernambuco - Brazil

Probabilistic Safety Assessment and Management (PSAM14) - Los Angeles - 2018

Our focus

Air traffic control towers

Industrial control rooms

Drivers

AUTOMOTIVE 90% (NHTSA, 2008)

National Highway Traffic Safety Administration

Drowsiness

- Transition between the awake and sleep states;
- Ability to observe and analyze is strongly reduced;
- **Increase** in reaction time.

Decision-making in complex systems

Proposed Solution for drowsiness detection

- Image-based method;
- Real-time;
- Physically non-intrusive;
- Standard computer camera;
- Not computational intensive.

Computer Vision

- Studies the automatic extraction of information from images and videos¹;
- One of its main goal is to enable computers to reproduce core functions of human vision, such as motion perception and scene understanding;
- CV uses three key steps²:
 - 1. Detection of **movement** of objects;
 - **2. Tracking** of such objects from frame to frame;
 - 3. Analysis of object tracks to **recognize** their behavior.

¹Jan Erik Solem, 2012 ² Yilmaz, Javed and Shah, 2006

(x=262, y=176) ~ R:21 G:12 B:17

Eye Aspect Ratio

$$EAR^{1} = \frac{\|p_{2} - p_{6}\| + \|p_{3} - p_{5}\|}{2\|p_{1} - p_{4}\|}$$

- EAR The proportion between the **width** and **height** of the eye, based on its landmarks;
- Calculated for **each frame** over the real-time video;
- A decrease in the EAR is expected as users close their eyes;
- **Simple**, yet robust metric.

¹Soukupová and Jan Cech, 2016

Support Vector Machines

Training:

We concatenated 15 consecutive EARs to create a temporal user's state feature (x);

- State classification (y):
 - $0 \rightarrow \text{Open eye};$
 - $1 \rightarrow \text{Blink};$
 - 2 \rightarrow Closed eye.

Support Vector Machines

- Training database: more than 270 features were created

- 13 different users;
- Natural and abnormal facial expressions;
- Glass wearing users;
- Distinct head positions.

Support Vector Machines

Personal Feedback

Drowsiness Detection and Warnings

Two different situations were considered as drowsiness states*:

If in a period of 1 minute, the proportion #2/(#1+#2) are greater than 30%;

If 4 consecutive outputs (i.e. predictions of SVM) are 2 (closed eyes);

*Caffier & Erdmann, 2003

These situations are correlated with the first stages of drowsiness

(x=56, y=195) ~ R:223 G:229 B:238

DROZY Dataset

- Database containing various types of drowsiness-related data for 14 subjects:
 - Eletroencephogram (EEG);
 - Eletroculogram (EOG);
 - Eletrocardiogram (ECG);
 - Videos.

Successive psychomotor vigilance tests (PVTs) over two consecutive days under conditions of increased sleep deprivation;

DROZY Dataset

- Totally different environment than we trained the SVM model:
 - Camera position;
 - Color;
 - Brightness;
 - Presence of electrodes;
 - Recorded with a different number of frames per second (FPS).

DROZY Dataset

- Subjects filled a **Karolinska Sleepiness Scale (KSS)** form;
- KSS is a self-declaration of the level of drowsiness;
- **KSS** is a reliable indicator to measure drowsiness (Kaida et al., 2006).

DROZY Results

Subject	PVT1	PVT3
1	0	11
2	0	
3	0	
4	50	2
5	0	0
6	0	19
7		33
8	0	1
9		26
10	0	7
11		28
12	0	
13		
14		34
Averag	e 0	16.1

Number of warnings

DROZY Results: subject #6

SVM Classification For Drowsiness Detection Using Eye Aspect Ratio Maior et al. (2018) – PSAM14, Los Angeles

17/17

SVM Classification for drowsiness detection using eye aspect ratio

C.S. Maior, Márcio das Chagas Moura, E.L. Droguett et al.

CEERMA - Center for Risk Analysis, Reliability and Environmental Modeling Federal University of Pernambuco - Brazil

E-mails: marcio@ceerma.org; marciocmoura@gmail.com

Probabilistic Safety Assessment and Management (PSAM14) - Los Angeles - 2018