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Motivation

« Autonomous vehicle operations are set to expand in the National
Airspace and National Highway System.

* Vehicles need to be equipped with controllers that have the capability
of safely completing tasks and reacting to sub-nominal situations.

a

https://c8.alamy.com/comp/JJMFB4/smart-car-hud-and-
autonomous-self-driving-mode-vehicle-on-metro-city-JUIMFB4.jpg

» Such situations can lead to a degraded performance, causing the
occurrence of hazards or accidents.

« Safety and Risk Assessment techniques need to be developed to

identify risk-significant event sequences leading to hazardous
situations.

https://www.extremetech.com/wp-content/uploads/2014/09/self-
driving-head-640x353.jpg

 Physical testing of all emerging autonomous technologies is too
expensive and time-consuming.

« Alternatives to physical testing need to be developed to ensure safe
operation of autonomous functions.

«  Dynamic Probabilistic Risk Assessment techniques can provide safety
assurance by utilizing model-based designs of autonomous systems.

shahrivar1/11_NM_Auto%20quality%20-%20500.jpg
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Risk Analysis Techniques

« Quantitative analysis (QA) methods are typically used for estimating likelihoods of violating safety
goals under certain system failures.

«  Some common QA tools in industry:
« Fault Tree Analysis ;
+ Event Tree Analysis : :
) ) Have challenges in expressing
. Fa|llure. .Mode and .Effects Analysis 60 600 dod events that include changes to
* Reliability Block Diagrams Y 00 DO E system dynamics

* In control systems literature, reachability
analysis is a commonly used assurance
method.

Has challenges when incorporating
system component changes, or high
fidelity system models that cannot be
expressed in analytical form

Colbaugh, Rich et al. "Some intelligence analysis
problems and their graph formulations." J. Intelligence
Community Research and Development (2010).

 Dynamic Probabilistic Risk Assessment
(DPRA) approaches are capable of A

Allows expressing changes
in system dynamics and
system configuration

providing frameworks that allow Jﬁﬁ +
considering  epistemic and aleatory | & L O

uncertainties in physical processes and —

system safety responses.

« The Markov Cell to Cell Mapping technique is one such DPRA method 3
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Markov/CCMT History

1980 — Theory of CCMT introduced by Hsu.
1987 — A Markovian interpretation of CCMT proposed by Aldemir

1990 — Failure analysis performed on closed loop control system of
a process plant by utilizing databases to represent system dynamics

1996 — Continuous Markov/CCMT developed

2006 — Markov/CCMT utilized for PRA of control systems of nuclear
reactors.

2016 — BPA proposed by Yang and Aldemir and demonstrated on a
level control system. Funded by NASA Ames (SSAT) / NSF CPS

2017 — BPA was used to identify risk-significant scenarios leading to
hazardous events for unmanned aircraft control systems.

2018 — BPA was used to identify risk-significant scenarios leading to
hazardous events for unmanned ground vehicle control systems.

2018 — Concept of S-BPA introduced for risk-analysis of multi-phased
control systems equipped with contingency actions.




General System-Level Description of AVs

* An autonomous vehicle (AV) is one that can guide itself
without human conduction.

« This requires design and
decision making techniques,

estimation algorithms, etc.

implementation of high-level
low-level

Set-points

control systems,

Errors

« The system is composed of a continuous state space

(position, velocity, rates, angles, etc.) and a discrete state
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An lllustrative Explanation of Markov/CCMT

System State
Evolution under fixed

Initial Conditions Monte Carlo component conditions
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System continuous
states and discrete
component states
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A cell to cell
mapping is
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whole cell space.

Such a map can
be used to
construct possible
system trajectories

System evolution in
forward time:
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The Deductive Markov Cell to Cell Mapping Technique

Challenge 1: Forward integration of the system
cells is generally not a trivial task for the case of
————————————————————————— autonomous vehicles. D ——— - ——
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The Backtracking Process Algorithm

Solution 1: An equal weight quadrature scheme can be used to sample multiple
points from each cell, and run these samples in forward simulation over a

BPA was designed to
overcome the
aforementioned
challenges, which are
associated with
deductive
implementations
Markov/CCMT.

of

BPA is a deductive and
memory efficient

implementation of
Markov/CCMT.

The algorithm includes
the addition of three
main components to
Markov/CCMT. Each
component addresses
a challenge associated
with  the deductive
implementation of
Markov/CCMT.
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Solution 3: a breadth-first
search scheme is developed to
construct paths of risk
significance leading to the Top
Event.
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An Overview of the Backtracking Process Algorithm
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This cell to cell map can be used to
identify paths of risk significance that
lead to Top Events of interest

10
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BPA Example — A Simple Case Study

Cdes = Lgap X Vhost

—_—

500m

+  BPA was used to provide an assurance case for a simple case study of a
controller for an autonomous car approaching a stationary vehicle or object
under possible Brake malfunctions

« Emergency and contingency actions can be modified based on the

identified scenarios from BPA.

« Each cell in the discretized space is

* This process can then be iteratively used to modify contingency actions,
until results ensure that scenarios only lead to the violation of a safety goal
within acceptably low probabilities

represented by 7 integers. 1. [411122111]- The AGV initially has a
« Thefirst 6 int t th t H i H
nmbor of the partitioned contindons variables forward velocity of 16 to 20 m/s, a sideward velocity
- based on the system discretization of -0.5 to 0.5m/s, a yaw rate of -0.05 to 0.05 rad/s,
o /%:104’*25(‘2 —3 4 - The 7™ integer represents the brake condition. an X-posmon of 484-4887 an y-Posmon of -2 to 2m,
bei24112 K\ ] 1281 ??’4\25“2 /N B 125113 974\‘«25“3 and a Yaw angle of —=3° to 3°. The brake state was
/AN /| \ \ / AN /AN Normal.
11#110/1 3P1X\1102,:N11‘t,1 w3 [yw 1111)11’2,31 139“153”/1 3P1ﬁ5b2>\1111°1 r<y 1%11}%311/1% b%&“%’ 7
b11.52,2111:i>11b%41113p11},2,4|111>11h2,21;{1 :b11b%4111:}>1152,411.1 13111%2111§,11h%41113p11b%41111>11$2111:13111)2,41113#111%4111 2. [311124112]_ One time step later (665)’

the AGV had a forward velocity of 12 to 16m/s, a
sideward velocity of -0.5 to 0.5m/s, a yaw rate of -
0.05 to 0.05 rad/s, an x-position of 492 — 496m, an
y-Position of -2 to 2m, and a Yaw angle of -3° to
3°. The vehicle experienced a Minor Brake Fault.

BPA Results are presented in a search tree format.

The top node represents the Top Event, all subsequent nodes represent the
system state at previous time-steps, with probabilities associated to

transitions in the tree. 3. Collision — One time step later the AGV

collides with the stationary vehicle located at an x-
position that is greater than 500m, leading to a
violation of the safety goal. 11

Once the nodes are converted back to the continuous domain representation,
each branch would represent a sequence of events that led to the Top Event
under current controller actions.
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Challenges of BPA and Proposed Solutions

While BPA can alleviate challenges associated with Markov/CCMT, use of a BPA breadth-first search

scheme has two main limitations:

1. Large scale control systems that involve high levels of autonomy
and numerous hardware are generally hard to accurately set up
and initialize using single BPA implementations.

* For large scale systems, using a single partitioning scheme
to create a cell space can prove to be very computationally
expensive.

* Domain experts need a high level of coordination for a
single BPA implementation across all mission phases.

2. For autonomous systems with large state spaces such as platoons
or formations of vehicles, combinatorial and computational issues
are prone to appear.

« Two solutions that have been explored to address the
challenges are the following:

1. Use of phase-specific BPA implementations, and the integration of
analysis results that are obtained from runs over multiple phases.

2. Reduction of the system cell-to-cell map by use of a coarser
partitioning scheme, and compensating for the coarser scheme by
increasing the number of samples taken from each cell in the
quadrature scheme.

Phase A

Phase B

LV

Phase A

PhaseC

Phase D

Phase B

. . I | Phase(
Phase D

12
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The Phased BPA Implementation: A Case Study

* A scenario is constructed for a UAS cruising at an altitude that makes it prone to icing. The UAS then
performs a land, or a sub-nominal land maneuver with an initial descent, final descent, and flare.
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Phase | Cell representation of | Time-step | Elapsed | Cell Description
Process Variables & Time *only the process variables and configurations relevant to the system evolution are described
System Configuration

Cr [2 3113821 3]C 100s Os UAS level at [1425,1475) m, a velocity of [40, 45) m/s, [20,40) % icing, under severe weather conditions.

Cr [2 3113941 3]C 100s 100s UAS level at [1425,1475) m, a velocity of [40, 45) m/s, [40,60) % icing, under severe weather conditions.

Cr [2 31131051 3]C 100s 200s UAS level at [1425,1475) m, a velocity of [40, 45) m/s, [80,100) % icing, under severe weather conditions.

ID [3111105142],p |60s 300s UAS descending at y € [—6°,—3°), a velocity of [40, 45) m/s, altitude of [1350, 1500) m, full icing, and engine power loss.

ID [211196142]p |[60s 360s UAS descending at y € [—6°,—3°). a velocity of [35,40) m/s, altitude of [1200, 1350) m. full icing. and engine power loss.

ID (211187142] |60s 420s UAS descending at y € [—6°,—3°). a velocity of [35,40) m/s, altitude of [1050, 1200) m. full icing. and engine power loss.

1D [211178342]p 60s 480s UAS descending at y € [—6°,—3°), a velocity of [35.40) m/s. altitude of [900. 1050) m, full icing. and engine power loss. Set-
point mode changes from 1 to 3 (higher velocity)

ID [6111610342];p |60s 540s UAS descending at y € [—6°—3°). a velocity of [55,60) m/s, altitude of [750, 900) m. full icing. and engine power loss.

ID [6111512342];, [60s 600s UAS descending at y € [—6°,—3°), a velocity of [55.60) m/s, altitude of [600, 750) m, full icing. and engine power loss.

ID [6111413342], |60s 660s UAS descending at y € [—6°—3°). a velocity of [55,60) m/s, altitude of [450, 600) m. full icing. and engine power loss.

D [6111314142];, |60s 720s UAS descending at y € [—6°,—3°). a velocity of [55.60) m/s, altitude of [300, 450) m. full icing, and engine power loss. Set-point
mode changes from 3 to 1 (adjusting FPA for flare entry).

ID [2111215142];p |60s 780s UAS descending at y € [—6° —3°), a velocity of[35,40) m/s, altitude of [150, 300) m, full icing, and engine power loss.

FD (131111242]g |12s 840s UAS descending at y € [—4°,—3°), a velocity of [34,36) m/s, altitude of [0,40) m, full icing. and engine power loss.

FD (141112242]g |12 852s UAS descending at y € [—3°,—2°), a velocity of [34,36) m/s, altitude of [0,40) m, full icing. and engine power loss.

FD (141113242]g | 125 864s UAS descending at y € [—3°—2°), a velocity of [34,36) m/s, altitude of [0,40) m, full icing. and engine power loss.

Fl [541127142]f |S5s 876s UAS descending at y € [—2.5°,—2°), a velocity of [34.36) n/s, altitude of[13,26.7) m, full icing, and engine power loss.

Fl [531128142]g |5s 881s UAS descending at y € [—3°—2.5°), a velocity of [34.36) ms, altitude of[13,26.7) m, full icing, and engine power loss.

Fl [541129242]y |5s 886s UAS descending at y € [—2.5°,—2°), a velocity of [34.36) n/s, altitude of [13,26.7) m, full icing, and engine power loss.

Fl [5311210242]g |5 891s UAS descending at y € [—3°,—2.5°), a velocity of [34.36) m/s, altitude of [13,26.7) m, full icing, and engine power loss.

Fl [5411211242]y |5s 896s UAS descending at y € [—2.5° —2°), a velocity of [34.36) m/s, altitude of [13.26.7) m. full icing. and engine power loss. SP
Mode is changed from 2 to 1 in preparation for touchdown

TK | rev " " - oON1le TJTAQ arrivee at tonichdovwn noint 1inder 1iindecirabhle canditione
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Conclusion & Insights

Dynamic PRA methods can overcome some of the challenges posed by the traditional risk
assessment methods and reachability analysis techniques.

The BPA is ideal for use in emerging autonomous technologies that are utilizing model-based
design procedures.

The development of a set of procedures and methods for autonomous vehicle control system
assurance is vital for the certification and safe deployment of such systems in civilian

applications.

The capability of BPA to consider the uncertain and stochastic nature of autonomous
vehicles is especially advantageous when considering their insufficient operating experience.

BPA is capable of identifying sequences of actions that involve changes in the system
dynamics and component states that might not be directly obvious or easy to capture.

The algorithm is easy to implement and can be used for practical problems in a mechanized
manner. However, speed of analysis is largely dependent on the system size and the
simulator representing the system.

15
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Future Work

Theoretical foundation of the Sequential BPA is being developed for handling
phased missions of large scale systems.

[2] BPA will be used to test controllers for multi-agent systems such as platoons of
vehicles, or formations of aircraft.

[2] The role BPA can play in early system Validation and Verification is being
investigated.

16
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Thank You

Contact: hejase.1@osu.edu
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Appendix
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The Backtracking Process Algorithm Flowchart
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