

Producing effective maintenance strategies to control railway risk

Claudia Fecarotti and John Andrews

Resilience Engineering Research Group

The University of Nottingham

PSAM 14 – Probabilistic Safety Assessment and Management

16-21 September 2018, UCLA Meyer & Renee Luskin Conference Center, LA

Motivations

- Complex and diverse portfolio of assets
 - Heterogeneity
 - Highly interconnected (dependencies)
 - Expensive to manage

- Many assets are safety critical
- Maintenance is vital to control the risk and ٠ maintain high levels of service

Resilience Engineering Research Group

UNITED KINGDOM · CHINA · MALAYSIA

Need for an effective approach to asset management to run a SAFE, RELIABLE and AFFORDABLE railway

- Bespoke models to predict assets response to maintenance
- Whole-life / Whole-system approach
- Link asset maintenance to system performance and safety

Railway Asset Management Framework

Railway Asset Management Modelling Framework to support both **localised** and **systemic optimal decisions** on infrastructure maintenance

Library of models

- Statistical models
- Predictive models
- Optimisation models

Decision levels

- Infrastructure: asset/section/route/network
- Planning stage: strategic/tactical/operational

Procedures to link models for whole-system representation and analysis

Resilience Engineering Research Group

Past data Predictive models Future data models

n Optimal decisions

UNITED KINGDOM · CHINA · MALAYSIA

Predictive models

- Asset state models to assess assets response to maintenance
- Service provision model to evaluate delays and journey cancellations
- **Risk and safety models** to evaluate risk and consequences of hazardous events

Enable prediction of **KPIs**

- Assets conditions
- Service reliability
- Safety
- Costs

Asset State Models

DEGRADATION AND FAILURE

&

INTERVENTION STRATEGIES:

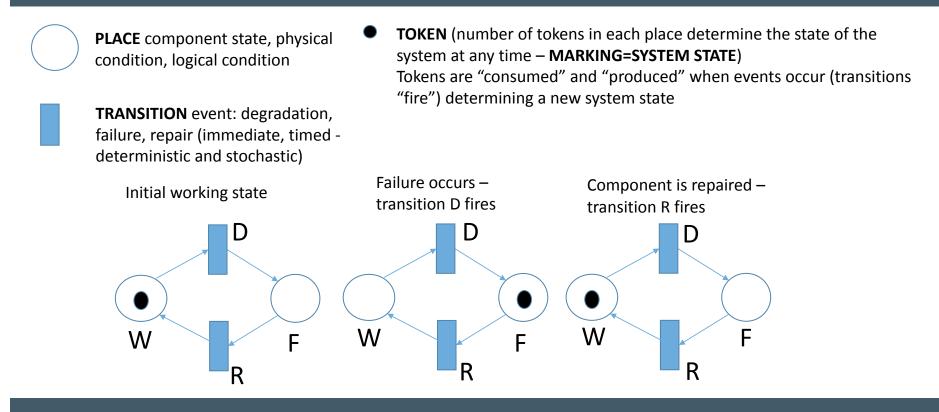
- Inspection type and frequency
- Levels of degradation triggering intervention
- Components replacement prior to failure
 Condition
 - •Age
 - •Usage
- Opportunistic maintenance
- Renewal
- Enhancement
- Resources availability (equipment and personnel)

For any asset management strategy predict distributions of :

- Asset conditions
 - Failure modes probabilities
 - Duration of failed/degraded states
 - Future conditions (at any time)
- Asset availability
- Number of each intervention type
- Asset remaining life

ASSESS AND COMPARE DIFFERENT MAINTENANCE STRATEGIES TO SUPPORT DECISIONS

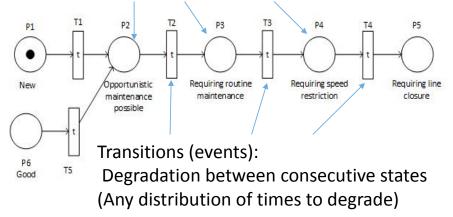
Common modelling technique: Petri nets



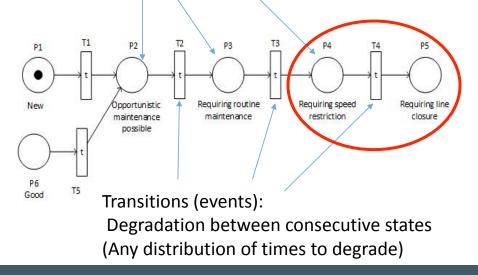
• State-based

- Stochastic
- Simulation friendly
- Any distribution of failure times
 - Assets wear-out (increasing failure rate → early replacement option)
 - Dependency on past conditions/events
- Complex maintenance processes:
 - Servicing, inspection, replacement prior to failure (based on; condition, age, use), reactive repair, refurbishment, renewal
 - Condition and risk based inspection
- Concise structure compared to the credible alternatives
- Modularity (Easy linking to form the system model)
- Distribution of outputs rather than point estimates

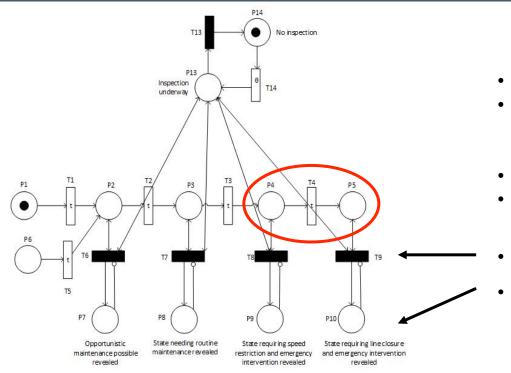
Petri nets



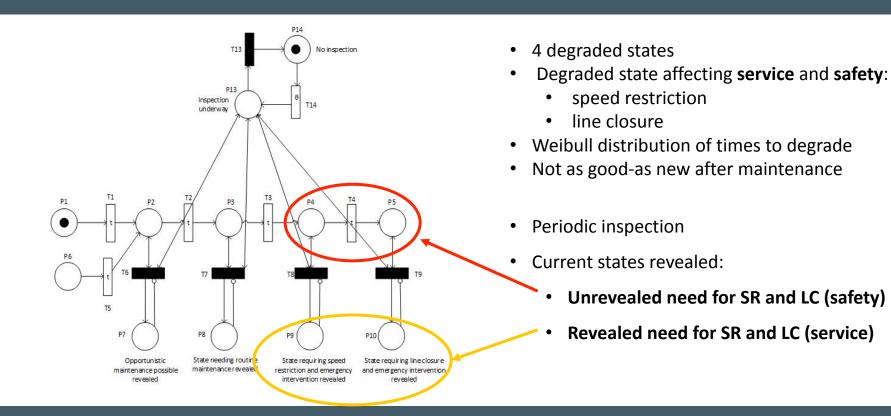
Places (conditions):

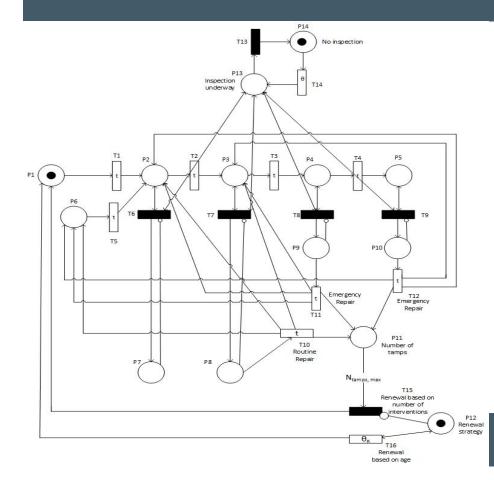

Progressive levels of degradation triggering different maintenance interventions

- 4 degraded states
- Degraded state affecting service and safety:
 - speed restriction
 - line closure
- Weibull distribution of times to degrade
- Not as good-as new after maintenance



Places (conditions): Progressive levels of degradation triggering different maintenance interventions


- 4 degraded states
- Degraded state affecting **service** and **safety**:
 - speed restriction
 - line closure
- Weibull distribution of times to degrade
- Not as good-as new after maintenance



- 4 degraded states
- Degraded state affecting service and safety:
 - speed restriction
 - line closure
- Weibull distribution of times to degrade
- Not as good-as new after maintenance
- Periodic inspection
- Current states revealed

- 4 degraded states
- Weibull distribution of times to degrade
- Not as good-as new after maintenance
- Periodic inspection
 - Unrevealed need for SR and LC (safety)

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Nottingham

- Revealed need for SR and LC (service)
- Revealed states trigger maintenance
- Maintenance effectiveness
- Side-effect of tamping
- Renewal strategies (e.g. age, past maintenance)

Track geometry maintenance application

What do we use it for? To investigate asset response to maintenance.

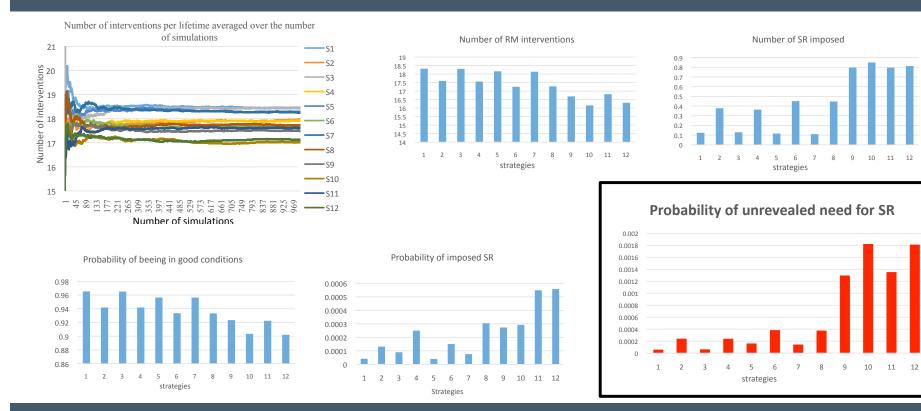
Table 1 SD threshold values for each degraded state

SD _{op}	SD _{rm}	SD _{sr}	SD _{ic}	Table 2
opportunistic	routine maintenance is	SR and emergency repair	LC and immediate repair	represer
maintenance is possible	required	required	required	T1
(associated to place P2)	(associated to place P3)	(associated to place P4)	(associated to place P5)	β
1.5	1.8	2.5	3.5	1.5

 Cable 2 Weibull parameters associated to each stochastic transition

 epresenting degradation

T1		٦	T2		T3		Т4		Т5	
β	η	β	η	β	η	β	η	β	η	
1.5	600	1.5	500	1.6	370	1.7	280	1.8	740	


Table 3 Maintenance strategies.

Strategy	Inspection period (T14)	Mean time to perform routine maintenance (T10)		Mean time to perform maintenance from speed restriction (T11)		Mean time to perform immediate repair (T12)	
	θ(days)	μ(days)	σ ² (days ²)	μ(days)	σ ² (days ²)	μ(days)	σ ² (days ²)
1	15	20	5	5	1	1	0.1
2	15	20	5	10	2	1	0.1
3	15	30	5	5	1	1	0.1
4	15	30	5	10	2	1	0.1
5	15	40	10	5	1	1	0.1
6	15	40	10	10	2	1	0.1
7	120	20	5	5	1	1	0.1
8	120	20	5	10	2	1	0.1
9	120	30	5	5	1	1	0.1
10	120	30	5	10	2	1	0.1
11	120	40	10	5	1	1	0.1
12	120	40	10	10	2	1	0.1

Track geometry maintenance results

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Conclusions and future work

- Need for a systematic approach to railway asset management: Railway Asset Management Modelling Framework
- Asset state models to predict asset response to maintenance
- Modelling technique: Petri net
- Results (failure modes probabilities) are input to service and safety models thus enabling to link maintenance to system performance and safety

Future work

• Continue populating the framework.....

