ANADARKO PETROLEUM CORPORATION

On the Development of the Blowout Preventer PRA Model

Jan Swider^{ac}, Charley Gallo^{bc}, Gregg Walz^c, and Jim Raney^c

^a Cogoto, Inc., ^b The Frontline Group, ^c Anadarko Petroleum Corporation

Agenda

- Background Offshore Well Control
- BOP System Description
- BOP PRA Model Development Process
- Results from the BOP PRA
- Summary

Offshore Well Control

Well control – a means of preventing uncontrolled influx of formation fluids, a kick, into the wellbore during drilling.

- Primary well control maintaining the fluid column hydrostatic pressure above the formation pressure
- Secondary well control -Blowout Preventer (BOP) system / barrier integrity

Why BOP PRA at Anadarko

Development of the 20,000 psi rated BOP equipment

- Anadarko 20K BOP equipment internal approval
- Design selection of BOP control system
- BSEE 20K BOP equipment approval

Gulf of Mexico Daily Rig Operations

- Anadarko internal approval for unplanned situations
- BSEE "alternate compliance" approvals
 - BSEE 21 day BOP testing approval request
- Reducing Human Factors risk
- Identifying and justifying equipment upgrades

The Anadarko PRA Development

- Space Act Agreement with NASA
- Small Anadarko internal team to coordinate the process
 - Cogoto, Inc. and The Frontline Group
 - Supported by both process and equipment SMEs
- Phased approach for the generic PRA Studies
 - Blowout Preventer (BOP)
 - Dynamic Positioning System (DPS)
 - Integrated PRA Model (expanded BOP and DPS)

Drilling System: MODU and Subsea BOP

BOP System's Size

BOP Subsystems

Integrated Model Development Framework

A collaborative and iterative process

APC – Anadarko Petroleum Company SME – Subject Matter Expert

Well Kick Operational Conditions

Well Kick Operational Conditions

Well Kick while Drilling Event Sequence

Example of a Top Fault Tree

Human Reliability Analysis on Critical BOP Operations

- Utilized CREAM for the HRAs
- HRA Scenarios:
 - Kick detection and BOP closure response
 - Switching between the Yellow and Blue Pods
 - Initiating an Emergency Disconnect
- Engaged Maersk Training for the kick detection and response HRA

BOP PRA Highlights

- Initiating Events: Well Kick and Loss of Position
- End States: Loss of Containment of Formation Fluids and Closure of BOP as the successful state
- Multiple Event Trees were developed as part of this analysis
- 170 Fault Trees
- Over 1100 Basic Events, e.g.
 - Solenoid / Pilot Valves Failure to Open
 - Shuttle Valves Leaks Externally
- Over 17,000 cut sets generated from the model
 - Using a truncation limit of 1E-10

Generic Model's Overall Results

Contribution To the Overall Risk Based on Generic N

Summary of Results

- For the current model, the human is the largest contributor to the overall risk, thus confirming the O&G experience
 - What was not expected was the magnitude of the human's contribution to the overall risk
- Equipment contribution was not as significant as was expecting
 - Multiple redundancies reduce the impact of equipment failures
- The generic model has proven to be great starting point for specific MODU and BOP PRAs

Lessons Learned

- Assure adequate upfront time for familiarization of both the system and the process
- Engage process experts from outside of the industry for a different perspective and internal experts with knowledge of both O&G and PRA methodology
- Establish a standardized and simplified naming convention
- Expect multiple updates and iterations to improve the PRA model
 - Using a collaborative process and phased approach to model development

Thank you!