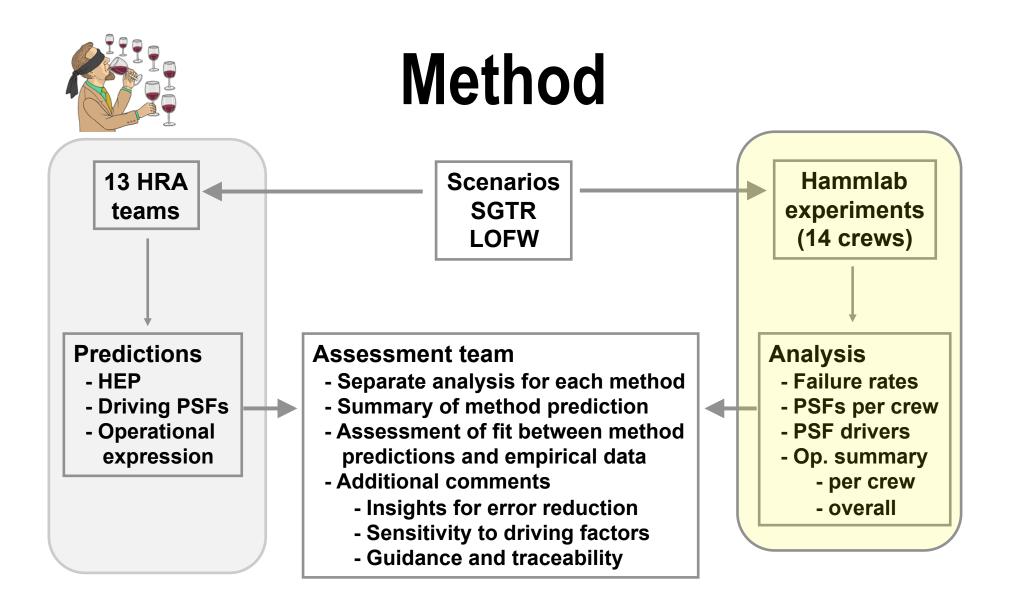
### Informing HRA by Empirical Data, Halden Reactor Project Lessons Learned and Future Direction

Andreas Bye, OECD Halden Reactor Project, Institute for energy technology (IFE)

PSAM 14, UCLA September 16-21, 2018

### Three cases on data for HRA

- 1. Empirical study to evaluate HRA methods
- Data to support consistent use of the HRA methods by improving the general knowledge of HRA practitioners through qualitative influential details of scenarios
- 3. Data to support basic questions on e.g., digital vs analog systems

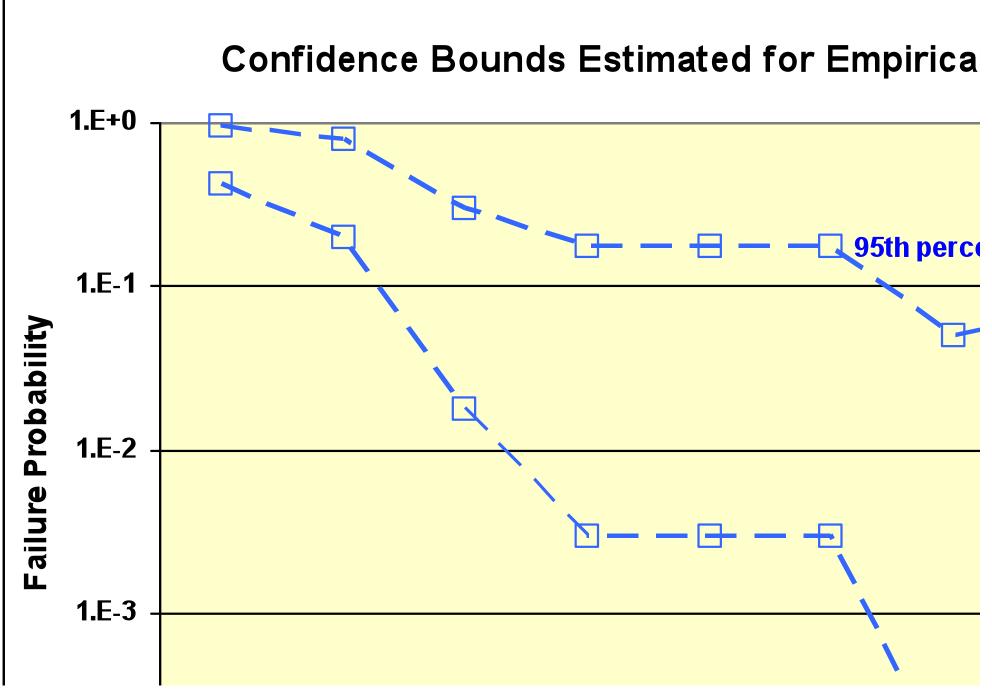

Can data replace HRA methods?



## 1. Empirical study to evaluate HRA methods

- "The International HRA Empirical Study", NUREG-2127; NUREG/IA-0216, Volumes 1, 2 and 3
- "The U.S. HRA Empirical Study", NUREG-2156








### Three kinds of data

- Quantitative
- Qualitative
  - Crew stories
  - PSF impact





**5th per** 

### **Quantitative data**

- Utilizing Bayesian methods,
- 7 out of 7 failing crews gives a strong update and is good evidence
- 14 out of 14 successful crews is a weak update
  - Not possible to know whether this is a 10E-2 or a 10E-5 number
- This is worth recognizing when collecting data from training sessions



### **Evaluating the HRA methods**

- Could they identify the difficult Human Failure Events (HFEs) with their method?
  - Utilized crew stories and details of procedures
  - If not, why?
  - Qualitative scenario analysis was important, to identify operational issues
    - Which method prescribed the best analysis of the scenarios?
    - Were any methods prone to "misuse"?
  - Finding the impact of single PSFs was not so easy in an empirical study
    - PSFs interact
    - One PSF may cover for another



## Conclusions from the empirical studies

- *"The predictive performance of HRA methods could be evaluated by reference data from a simulator study."* (NUREG-2127)
- *"The studies have shown that simulator data are highly useful for HRA studies."* (NUREG-2156)



2. Data to support consistent use of HRA methods by improving the general knowledge of HRA practitioners through qualitative influential details of scenarios

Complex scenarios: What matters for crew performance?



## Experiments in the Halden Project 2002 – 2018

- 15+ data collections
- 60+ operator crews
  - 13 U.S. crews (2011, 2014 and 2018)
- 30+ scenarios, focus on
  - SGTR (Steam Generator Tube Rupture) (incl multiple)
  - LOFW (Loss of Feedwater) (and combined with SGTR)
  - ISLOCA (Interfacing System Loss of Coolant Accident, LOCA outside containment)
  - H.B. Robinson fire
- 250+ simulator runs
- 40+ Halden work reports





#### **HAMMLAB** experiments



### Masking and Complexity

- The more complex the tasks get, the more does (bad) teamwork impact performance
- Teamwork dimensions
  - "Mission analysis Cognition beyond procedure guidance"
  - "Process of consultation while performing technical work"
  - "Distributed leadership (mainly between Supervisor and Reactor operator)"
  - "Team orientation"
  - "Backup and support"



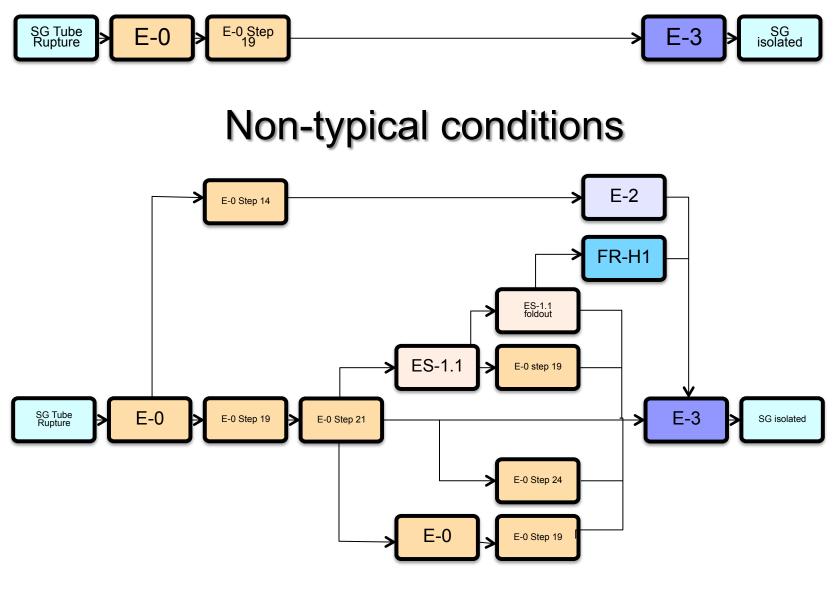
 Team Cognition important for diagnosis time in Complex situations

# Complex

- Less important for diagnosis time in "base" (prototypic al) situations
- Ref Braarud, Johansson (2010)

Base

#### **Procedure use**


 Mismatch between procedures and plant situation in non-typical conditions



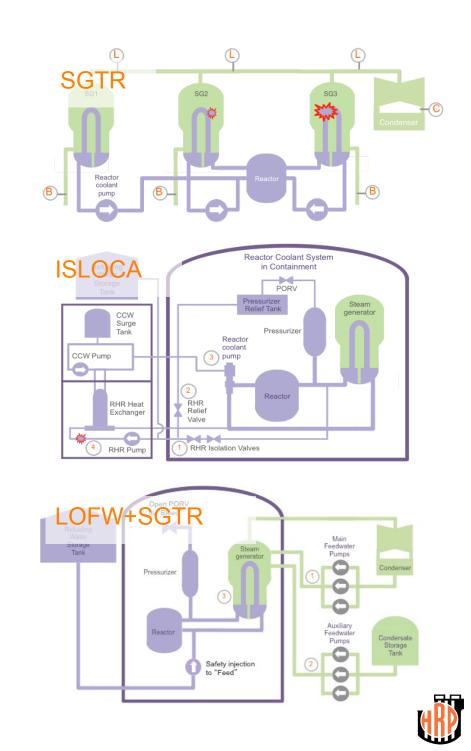
### HAMMLAB, monitoring procedure use



#### **Typical conditions**






## Scenarios and mismatches

Aspects of the procedures did not match the situation

- 1. Inserted multiple malfunctions
- 2. Key indicators referred in the EOPs unreliable
- Situation not fully covered by the relevant EOP
- 4. Ambiguous guidance/conflict between documents

Also, mismatches late into all the events

could not follow step-by-step



### **Recurring themes**

- High crew-to-crew performance variability
  - In within-design-basis accidents covered by EOPs
- Difficulties when the EOPs
  - Lacked detailed guidance
  - Required interpretation
- The more so in non-typical conditions
- Degraded indications (instrument failures, overlapping malfunctions, and miscommunications) are extremely challenging to the crews and can seriously affect plant safety



### What we learned – HRA

- Do not over-emphasize procedure following, not enough to analyze Error of Omission
  - After the first-hour into an emergency the proceduresituation fit is likely to decrease while fatigue effects arise: Higher likelihood for operators' autonomous decisions... and errors
- Always include analysis of cognitive aspects
  - Interpretations may be required also to apparently straightforward steps
- Extreme scenarios require lots of cognitive work from the crew:
  - Analyze procedures to identify possible procedure-situation mismatches. Degraded indications will result in mismatches
  - A deeper understanding of the nature of the difficulties for the crews is required, hence a thorough scenario analysis is needed for HRA (tasks/procedures)



Crew aspects must be analyzed, not only individual factors

### What we learned – crew organization

- Team factors and crew cognition critical for performance in difficult scenarios
  - E.g., role of the supervisor, distributed leadership, team orientation, backup and support
- Quality of teamwork decreases with complexity and fatigue
  - Less structured meetings, poor quality of briefings/ discussions
  - Communication errors
- Role of STA and independence of STA
  - Tendency of STAs to work mainly as "procedure following double-checker"
- Importance of local information (e.g., local radiation measurements)



### **Conclusions on qualitative data**

- Insights from simulated PRA scenarios including challenging situations outside the normal training envelope does improve HRA
  - Increased knowledge for HRA practitioners and regulatory reviewers
  - A better basis for **asking the right questions** in an analysis
  - Basis for updating methods, especially the contextinfluencing part (e.g., PSF multipliers)
  - Data has been used as input to SACADA



## 3. Data to support basic questions on e.g., digital vs analog systems



### Is Human Performance wrt safety impact similar in analog and computerized control rooms?

- New method: Micro-tasks (Ref. HWR-1130, HWR-1169, Hildebrandt et al., 2016)
  - Decontextualized tasks, typically identification/verification tasks
  - Frozen state of the plant, or mini-scenarios
  - Short data collections
  - Accuracy and speed (response time)



### Micro-Task study: Analog boards vs tablet displays



#### Micro-tasks on analog and digital CRs: Preliminary results and lessons learned

- More data is needed to consolidate findings
  - Collects more data, stores in Halden Project Human Performance DB
  - Methods and tools are in place to do this now
- Cognitive task types are as important as analog or digital presentation
  - Big difference in error rates in simple checks and calculation tasks
- No final conclusions yet, but interesting patterns emerge
  - Ex: Comparisons and calculations can be better in (new) digital solutions
  - Preliminary: Digital displays do not increase the error rates.



### Conclusions, data for HRA

- Validate HRA methods
- Adapting HRA methods to new digital systems:
  - Basic task probabilities may be defined/adapted based on micro-task methodologies (decontextualized). Quantative data.
  - Context adaptations (e.g., PSF multipliers) in the methods may be adjusted based on simulator experiments, mainly qualitative insights
    - Since these situations are context dependent, quantitative generalizations are not that easy

#### • Data can support consistent use of the HRA methods

- Qualitative insights can improve the HRA practitioner's knowledge (and reviewer's)
  - Ask the right questions for the given scenario
  - Better analysis of the impact of the PSF on human performance
  - Better knowledge on the degree of detailed analysis that is needed (when to stop the task analysis) 27



### Can data replace HRA methods?

- No
- ..... eeh maybe ... for well defined situations...
- Discussed in next session, panel on the future of HRA data



### Conclusions

- Various types of data are needed for different tasks and task types
- Quantitative and qualitative data can really support HRA
  - HRA method developers
  - HRA analysts

