

Validation of the NASA Integrated Medical Model: A Space Flight Medical Risk Prediction Tool

J. Myers¹, Y. Garcia², J. Arellano³, L. Boley², D. A. Goodenow¹, E. Kerstman⁴, M. Koslovsky², D. Reyes⁴, L. Saile², W. Taiym², Millennia Young⁵

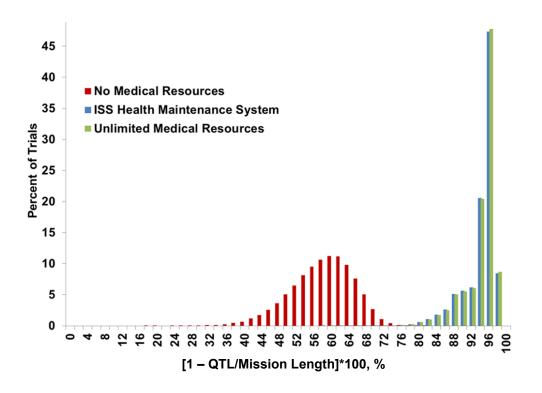
> ¹NASA - Glenn Research Center ²KBRwyle ³MEI Technologies ⁴University of Texas Medical Branch ⁵NASA – Johnson Space Center

Quantifying Spaceflight Medical Risk

Human Spaceflight Involves Both Engineering and Medical/Health Risks

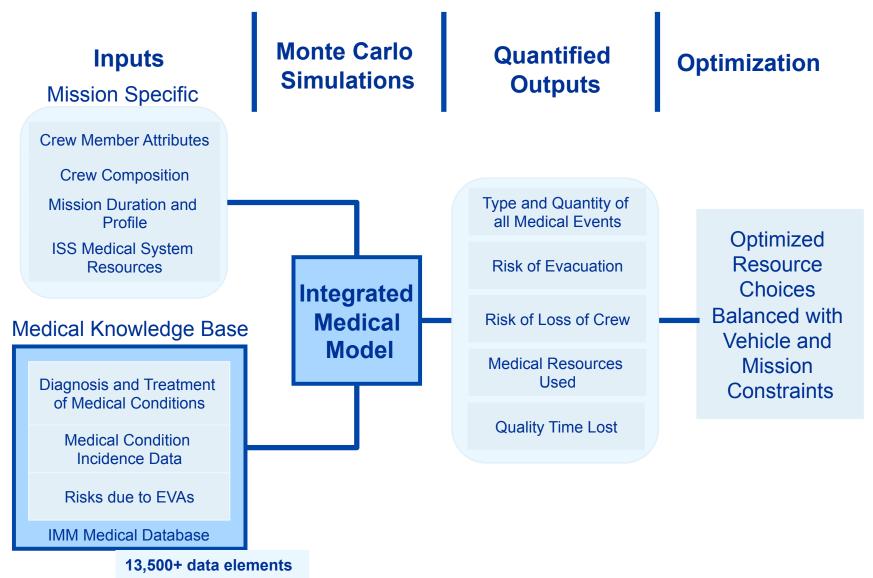
IMM

Mission and Vehicle Engineering and Design

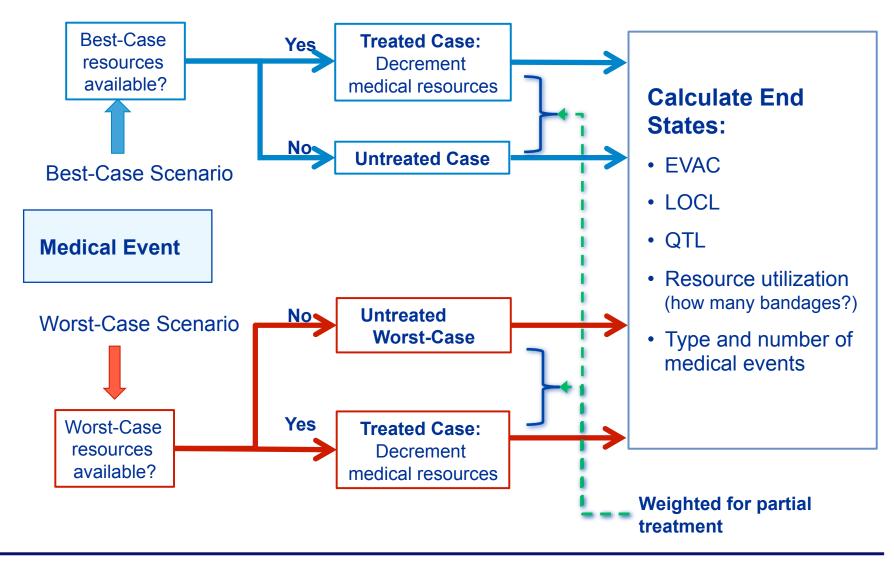

Balance Medical and Vehicle Resource Limitations with Quantitative Medical Risk Information Spaceflight Medical Community

Quantitative Tools to Assess Medical Risk and Optimize Mission Medical Resources

Integrated Medical Model: IMM


Stochastic simulation model that predicts in-flight medical events, the resources required to treat, and approximate impacts to the spaceflight mission.

- Mission medical risk
- Medical resource trade studies



IMM Workflow

IMM Methodology

National Aeronautics and Space Administration

The IMM Medical Conditions

SKIN

Burns secondary to Fire Skin Abrasion

Skin Laceration

EYES

Acute Angle-Closure Glaucoma

Eve Corneal Ulcer

Eye Infection

Retinal Detachment

Eve Abrasion

Eve Chemical Burn

Eve Penetration

EARS, NOSE, THROAT

Barotrauma (Ear/Sinus Block)

Nasal Congestion (SA)

Nose Bleed (space adaptation)

Acute Sinusitis

Hearing Loss

Otitis Externa

Otitis Media

Pharyngitis

DENTAL

Abscess

Caries

Exposed Pulp

Tooth Loss

Crown Loss

Filling Loss

CARDIOVASCULAR

Angina/Myocardial Infarction

Atrial Fibrillation / Atrial Flutter

Cardiogenic Shock secondary to Myocardial

Infarction

Hypertension

Sudden Cardiac Arrest

Traumatic Hypovolemic Shock

GASTROINTESTINAL

Constipation (space adaptation)

Abdominal Injury

Acute Cholecystitis/Biliary Colic Acute

Diverticulitis

Acute Pancreatitis

Appendicitis

Diarrhea

Gastroenteritis

Hemorrhoids

Indiaestion

Small Bowel Obstruction

LUNG

Choking/Obstructed Airway

Respiratory Infection

Toxic Exposure: Ammonia

Smoke Inhalation

Chest Injury

IMMUNE

Allergic Reaction (mild to moderate)

Anaphylaxis

Skin Rash

Medication Overdose/Adverse Reaction

NEUROLOGIC

Space Motion Sickness (Space Adaptation)

Head Injury

Seizures

Headache (Late)

Stroke (cerebrovascular accident)

Paresthesia Secondary to Extravehicular

Activity

Headache (Space Adaptation) Neurogenic

Shock

VIIP (Space Adaptation)

MUSKULOSKELETAL

Back Pain (Space Adaptation)

Abdominal Wall Hernia

Acute Arthritis

Back Sprain/Strain

Ankle Sprain/Strain

Elbow Dislocation

Elbow Sprain/Strain

Finger Dislocation

Fingernail Delamination Secondary to

Extravehicular Activity

Hip Sprain/Strain

Hip/Proximal Femur Fracture

Knee Sprain/Strain

Lower Extremity (LE) Stress fracture

Lumbar Spine Fracture

Shoulder Dislocation

Shoulder Sprain/Strain

Acute Compartment Syndrome

Neck Sprain/Strain

Wrist Sprain/Strain

Wrist Fracture

PSYCHIATRIC

Insomnia (Space Adaptation)

Sleep Disorder

Anxiety

Behavioral Emergency

Depression

GENITOURINARY

Abnormal Uterine Bleeding

Acute Prostatitis

Nephrolithiasis

Urinary Incontinence (space

adaptation)

Urinary Retention (space adaptation)

Vaginal Yeast Infection

INFECTION

Herpes Zoster Reactivation (shingles)

Influenza

Mouth Ulcer

Sepsis

Skin Infection

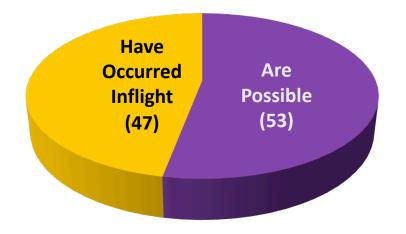
Urinary Tract Infection

ENVIRONMENT

Acute Radiation Syndrome

Altitude Sickness

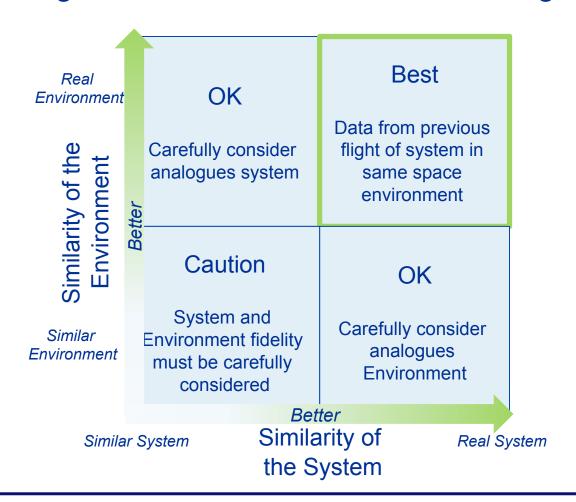
Decompression Sickness Secondary


to Extravehicular Activity

Headache (CO2)

Spaceflight Medical Knowledge Database: iMED*

- Categorize astronaut symptomatology into conditions, flight medicine concerns, and resources
- Lifetime Surveillance of Astronaut Health (LSAH)
 - ISS Expeditions 1 thru 13 (2006)*,**
 - STS-01 thru STS-114 (2005)
 - Apollo, Skylab, Mir (U.S. crew only)
- Analog & terrestrial data
 - Bayesian and Independent models analyses
- Flight surgeon Delphi study
 - Russian medical data not used


^{*} Integrated Medical Database, iMED

^{**} More current data used for Spaceflight Associated Neuro-ocular Syndrome, SANS

Validation

Compare IMM predictions to relevant referent: Real spaceflight observed medical events during real missions

What Data is Used for Comparison?

Real World System (RWS): 31 ISS and 21 STS missions not previously incorporated into the primary IMM data repository

STS 115 through STS 135 and **STS 107**

ISS Expedition (Exp) 14 through 39/40 and ISS Exp 9

Image Credits: NASA

IMM Simulations of the RWS **Missions**

Equivalent simulations performed for each RWS mission profile using IMM v 4.0

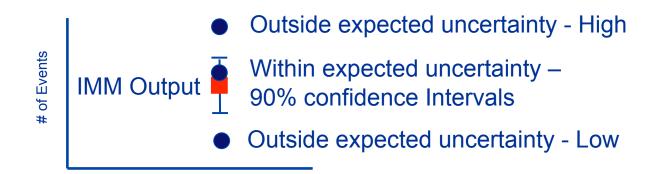
- Length of mission
- Mission schedule (EVA)
- Crew complement (sex, limited medical history)
- ISS simulation assumed resupply of medical supplies
- 100 Medical condition set

Observed and Predicted Outcomes

- Total medical events (TME)
- Medical consumable utilization
- Loss of crew life (LOCL) and potential need for evacuation (EVAC)*

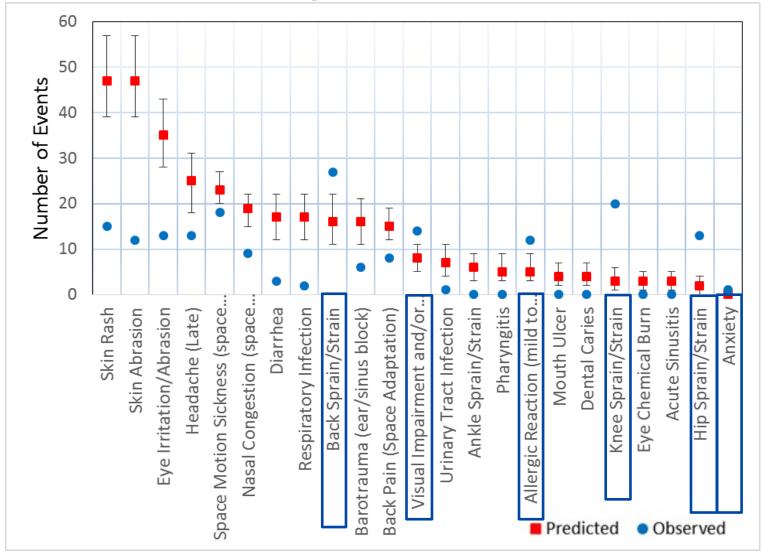
* RWS had zero LOCL and EVAC events

(Cumulative) Total Medical Events



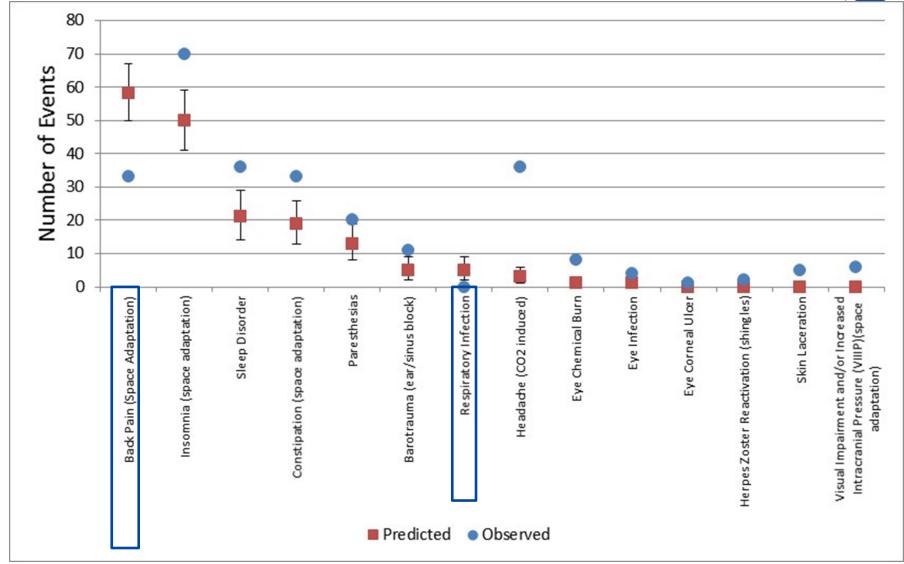
Predicted (P) Observed (O)

Observed: IMM medical conditions list only (mc)


Per Condition Comparison

- 20% of the STS and 15% of the ISS medical events within expected uncertainty.
- 14% for STS and 24% for ISS medical events outside of the expected uncertainty.
- The remainder of the events had an indeterminate comparison.

Out of Range ISS Conditions



Over predicted the number of events for all but 6 conditions.

Out of Range STS Conditions

Under predicted the number of events for all but two conditions.

Medical Consumables

	STS			ISS		
Medical Resource Category	Observed	Predicted	Match	Observed	Predicted	Match
Antacids	10	13	Fair	10	12	Excellent
Antibiotics	7	8	Excellent	7	3	Fair
Antidiarrheals	11	7	Fair	11	8	Fair
Antiemetics	3	1	Excellent	3	6	Fair
Antifungals	9	10	Excellent	9	9	Excellent
Antihistamines	4	3	Excellent	4	4	Excellent
Antivirals	13	12	Excellent	13	14	Excellent
Decongestants	6	5	Excellent	6	7	Excellent
Hypnotics	2	2	Excellent	2	2	Excellent
Laxatives	12	11	Excellent	12	10	Excellent
Non-opioid Analgesics	1	4	Fair	1	1	Excellent
Ophthalmic Lubricants	8	9	Excellent	8	5	Fair
Opioid Analgesics	14	14	Excellent	14	11	Fair
Steroids	5	6	Excellent	5	13	Poor

Positive correlation between the IMM predictions with the observed RWS STS: Kendall Tau-b = 0.76 and ISS: Kendall Tau-b = 0.57

LOCL and EVAC Comparison

STS	Predicted Number	90% Confidence Interval
EVAC RWS = 0	0	0, 1
LOCL RWS = 0	0	0, 0

ISS	Predicted Number	90% Confidence Interval
EVAC RWS = 0	0	0, 1
LOCL RWS = 0	0	0, 0

- Predicted counts are estimated using the median of the simulated distribution.
- A confidence limit of (0, 0) indicates that more than 95% of the generated LOCL counts was 0 as these confidence limits are estimated by the 5th and 95th percentiles of the simulation distribution.

Potential Implications on Decision Making

- Variation exists in IMM predictive power for STS and ISS missions
- Decision should account for information limits
 - Longer mission profile IMM tends to over predict incidences
 - Shorter mission profiles IMM tends to under predict incidence.
- Difference in predictions
 - Different ISS and STS reporting conditions.
 - Combining all "mission type" data
 - Constant occurrence rate or fixed proportion.

Future Work (Some Already Done!)

- Incorporation RWS data into the iMED
- Review of Treatment Pathway Data

Acknowledgments

GRC

- Kelly Gilkey
- **DeVon Griffin**

KBRwyle

Marlei Walton

Questions?