RASTEP

A novel tool for nuclear accident diagnosis and source term prediction based on PSA and Bayesian Belief Networks

Francesco Di Dedda

PSAM14 – September 18, 2018

Outline

- Introduction
- Aim and scope of the RASTEP project
- Introduction to Bayesian Belief Networks (BBN)
- Development of a BBN for a nuclear power plant
- Overview of the RASTEP tool
- The FASTNET project
- Conclusion

Introduction

- Early source term prediction in connection with severe accidents is crucial
 - Utilities predict source terms, and provide predictions to authorities
 - Nuclear safety authorities has often an important role after a severe accident, involving both communication and technical aspects
 - Authorities needs in-house source term prediction capability
- Plant PSA:s in many countries are detailed, full scope and continuously updated (yearly)
 - Increasingly used for risk informed applications
- Possibility to
 - Make use of the detailed PSA information for source term prediction
 - Make use of a BBNs' capabilities

Aim and scope of the RASTEP project

- The aim of the RASTEP project is to develop a tool for <u>RAPID SOURCE TERM</u> <u>PREDICTION</u> for practical use in severe accident situations, considering the specific needs of SSM's emergency organization
- While RASTEP has been tailored to the needs of the Swedish Radiation Safety Authority (SSM) the tool as such is well-suited for the needs of any emergency response organization or nuclear operator
- The RASTEP project has been ongoing since 2009.
 - Including development of BWR and PWR models for Swedish NPPs
 - Part of the scope in current phase is to verify and compare RASTEP outputs with similar results from SSM's emergency preparedness organization
- RASTEP is one of the tools that are evaluated in the EU project FASTNET (FAST Nuclear Emergency Tools, www.fastnet-h2020.eu)
 - 2015 2019
 - 20 partners from 18 countries

Introduction to Bayesian belief networks (BBN)

- In a BBN, one node is used for each variable, which may be discrete, continuous or propositional (true/false)
- Conditional probability is the basic concept in the BBN
- Using Bayes theorem, one's prior belief in the event (hypothesis) can be updated given the additional evidence (observation, finding)

 $P(State|Available information) = \frac{P(Available information|State) \cdot P(State)}{P(Available information)}$

Example: BBN for emergency core cooling for PWR plant

Example: BBN for emergency core cooling for PWR plant

Developing a BBN for an NPP

- Mapping of plant characteristics
 - Definition of the physical source term volumes (STV) to be considered
 - Fission product (FP) transport and release routes
 - Mapping of severe accident management systems and actions
 - Key plant systems
 - Observable plant state parameters
 - Physical phenomena
- Development of the model
 - Model structure
 - Conditional Probability Tables (CPTs)

Mapping of plant characteristics

Release path diagram showing source term volume (STV) and fission product (FP) transport routes – BWR example

Development of the model

Subnetworks – example – BBN of a Swedish BWR

Conditional Probability Tables – node categories

Node category	Determination of CPTs
Boundary condition node	Either 1 or 0, determined by user
Initiating event node	Derived from the initiating events (IE) in the PSA model
System or function performance node	Derived from basic events or fault tree analysis cases in the PSA model
Outcome determining node / source term node	Complex relationships, may rely on a mixture of engineering judgement, general considerations and calculations with the PSA, e.g. phenomena probabilities.
Measurement node	Consider both loss of detection and spurious detection. Prior assumptions regarding these failure modes are based on measurement component unavailability data .

PSA data – CPT modelling – BWR example

	•			
 Initiating events 	H_INIT: Initiating Event Large bottom LOCA 0.12 Large top LOCA 0.50 Small topt DOCA 0.38 Small topt DOCA 0.01 TE - Loss of offsite power 14.7 SB0 0.01 TF - Loss of feedwater 1.59 LUHS 0.20 T_other - Other IE 83.0 SRV fails to reclose 0.10	SRV_LOCA (SRV stuck open) Yes (1 or more SRV stuck op 1.85 No (all SRV:s reclosed) 98.2		
Systems	H_ECCS2: Availability of ECCS Available 1.32 Unavailable 98.7			
System function	H_IE_LOCA: LOCA initiator (size)	CC_AFW: Status of auxiliary feedwater sys		
\bullet System function,	Large bottom LOCA 0.12	Available 97.8		
requirements	Large top LOCA .050 Small top LOCA 0.11 No LOCA 99.3			
	RHR_RHRSYS_MAN: Activation of residual	MAN_SPRAY_INDEP: Activation of indepen		
Manual actions	Yes (activated) 97.0 No (not activated) 3.00	Yes (activated) 97.0 No (not activated) 3.00		
Dhonomono	H_PH_DCH: Direct containment heating (D H_PH_CONT_RUPTURE: Containment rupt			
	Early DCH 0+	Early failure (phenomenon) 0.31		
	Late DCH 0+	Late failure (phenomenon) 0.32		

100

No failure (phenomena)

99.4

No DCH

Prior probabilities are modelled using PSA data for:

		1	3

Graphical user interface

Question panel

- · Visualization of the prediction for status of the initiating events, fuel and reactor vessel.
- · Questions with possible answers to choose from.
- Opportunity to enter comments for specific issues / nodes.

Source term prediction

Cource Term Predictions	×
 Containment 	
65,59% probability of LOCA late/spray	
16,69% probability of LOCA late/no spray	
8,50% probability of LOCA early/no spray	
3,72% probability of Transient late/spray	
0,96% probability of Gap release	
0,95% probability of Transient late/no spray	
0,04% probability of Transient early/no spray	
< 0,01% probability of Transient early/spray	
< 0,01% probability of Transient filt venting/spray	
< 0,01% probability of Transient filt venting/no spray	
< 0,01% probability of LOCA early/spray	
< 0,01% probability of LOCA filt venting/spray	
< 0,01% probability of LOCA filt venting/no spray	
< 0,01% probability of Diffuse leakage	
 Reactor building 	
< 0,01% probability of Melt bypass (filtered)	
< 0,01% probability of Melt bypass (unfiltered)	
< 0,01% probability of Gap bypass (filtered)	
Turbine building	
0,96% probability of Melt bypass	
< 0,01% probability of Gap bypass	

- While responding to questions the source term prediction updates.
- The most probable sequence/source term is shown with a given probability on top of the list.
- Three possible locations for release (BWR model example):
 - Containment
 - Reactor building
 - Turbine building

Source term visualization per phase

- Pie-chart graphs show:
 - Release distribution per nuclide group per phase
 - Activities per nuclide group per phase

Source term visualization

- Activity release rates as histogram (TBq/h).
- Interpolation between points for time phases providing a rough estimation of cumulative released activity (TBq).
- Six nuclides that can be chosen separately.
- Fractions of core inventory in match with MAAP/MELCOR results.

RASTEP Case Report

Lloyd's Register

18

The FASTNET project

Objectives

- Set-up severe accident scenarios databases
- Qualify a common response methodology that integrates tools and methods to:
- Evaluate the source term
- Ensure diagnosis and prognosis of accident progression
- Make connection between FASTNET tools and other systems that use source term definition for further assessments
- Propose communication to the public of emergency management approaches, measures and resources in Europe

Lloyd's Register

Work packages

- WP1 Scenarios database
- WP2 Emergency preparedness

(incl. evaluation of BBN techniques)

- WP3 Emergency response (incl. BBN approaches)
- WP4 Emergency exercises
- WP5 Dissemination

(knowledge sharing and training)

• WP6 – Project management

www.fastnet-h2020.eu

Conclusions

- RASTEP provides emergency preparedness organisations with an independent view of an accident progression and possible off-site consequences
- RASTEP makes it possible for utilities to quickly take relevant accident mitigating actions following a nuclear power plant accident
- RASTEP provides authorities with information following a nuclear power plant accident for prioritisation of actions and/or giving recommendations to emergency response organisations

Thank you

Please contact:

Francesco Di Dedda, Senior consultant / Team Manager Department of nuclear consulting / Probabilistic safety analysis

+46 70 340 01 67

francesco.didedda@lr.org

support.rastep@lr.org

rmarklund@lr.com

a.person@lr.com