Leaving mission times backstage and taking repair into account in long term scenarios

Paper #145, PSAM14, Los Angeles

Anders Olsson

18 September 2018

Outline

- Introduction and objective
- Modelling of repair with traditional PSA technique
- Introduction to pilot study
- Introduction to Initiators & All Barriers (I&AB) methodology
- Application of I&AB methodology
 - Focus on impact of defined repair times
- Conclusions

Introduction and objective

What's the driving force behind this paper?

- For non-reactor nuclear facilities a 24 h mission time (Level 1) is often not sufficient.
- In long term scenarios it is reasonable to take repair into account in order to yield realistic results.
- How can long term scenarios be analyzed in a realistic manner and how to define repair?

Modelling of repair with traditional PSA technique

- Typically, the PSA analyst want to focus on what is driving the result, so in terms of repair:
 - Take it into account most contributing components
 - Consider other components to be non-repairable
- Also need to consider that some failure modes may not be repairable for all components

Introduction to pilot study

PSA for spent fuel facility

- Large fuel pools and low decay heat:
 - Boiling starts after ~1 week
 - It takes another ~3 weeks until boil-off cause fuel element uncovery
- Deterministic requirement that fuel pool cooling must not fail within 30 days after an IE.
 - 30 days mission time.
- Repair probabilities assessed based upon if repair can be conducted within 7 days or not
 0.01 ≤ Qrep ≤ 0.5

Model summary

Торіс	Note	
No. Basic Events	>1200	
No. Event Trees	>30 >350	
No. Fault Trees		
Consequences	BoilingFuel uncoveryMechanical damage	
Mission time	30 days (720 h)	
No. Basic Events modelling repair	<20 (~1%)	

How realistically has repair been considered?

What would the benefits be if a more realistic dynamic method would be applied?

Introduction to Initiators & All Barriers (I&AB) methodology

Simplified example of the principle without mathematical formulas

Consider a system of three repairable components where:

- S1 is in operation; S2 and S3 in stand-by
- Failure of S1 require S2 and S3 to start

Paper 203, session W23

Application of I&AB methodology

Repair rates & Grace time	Param.	#	Options
 Repair rates (1/[repair time]) instead of Qrep. Mandatory parameter Grace time defined as available time for repair. Optional parameter 	Repair time	A	 7 days for components where repair is consider in the PSA Others non-repairable
		В	 7 days for components where repair is consider in the PSA Others 30 days
		С	Conversion of Qrep to repair times
	Grace time	А	No grace time considered
		В	7 days (time until boiling)
		С	30 days (time until fuel uncovery)

Results obtained with inputs provided in the PSA

Case definition

- Repair only for same components as the base case.
 - 7 or 30 days assumed
 - Other comp's non-repairable
 - No grace time
- Same as #1 but comp's considered non-repairable are assigned 30 days repair time.
 - No grace time
- 3 As for #2 for repair time
 - Grace time of 7 days

Factor relative base case

As the dynamic approach is more realistic the results obtained indicate that the repair times of 7 and 30 days are too conservative

Estimation of less conservative repair times

- New repair times defined based on "eng. judg." for components that where assigned 7 or 30 days in case #1-3
- Repair time ranging between 8 h to 15 days.
- #5a: Other comp's 30 days repair time
- #5b: other comp's 7 days repair time

Verification of repair times used in case #5 is of great importance for the utility, not only in terms of "PSA result".

Conversion of Qrep to repair times

- What repair times do defined Qrep's represent?
- Conversion possible using reliability model for *repairable* components assuming they are failed at time T=0.
- 0.01 ≤ Qrep ≤ 0.5 corresponds to 1 h ≤ RT ≤ 125 h (~5 days)

Results achieved with Qrep converted to repair times

Case #6a – "Converted repair times" used only for components where repair is considered in the base case, other comp's are assumed to have a repair time of 30 days. Grace time of 7 days taken into account.

Conclusions and final remarks

- A refined methodology require refined & realistic data
 - Traditional PSA technique can use more "qualitative" information in order to define repair probabilities.
- Conversion of repair probabilities to repair times yields interesting results
 - Repair times are easier to communicate and get acceptance for.
 - Requirements on maintenance personnel and procedures can be defined.
- Impact on results can be significant.
 - Would enable the utility to focus on what is truly risk significant.

Thank you

Please contact:

Anders Olsson +46 (0)70 733 43 08

anders.olsson@lr.org