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Data-based methods (Black box methods)

) Life distribution ) Reliability

Life tests
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—e Problems:

* How about it is very hard to get enough samples to be tested to get enough
data about the product life?

* How about the product enjoys a pretty good quality which means you have to
spend a quite long time (maybe the whole life) to get the data, even using the
accelerating technology?

* How about the data is not reliable or not correct?
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PoF methods (White box methods)

Generalized Damage Parameter, GDP N = c(AW;)_; (%)"* (E)”
A%

4

For a complicated system, a single model is
too weak to describe the process of the
system failure, for the failure not only has the
relationship with one single mechanism or
several independent mechanisms, also relies
on the correlations among the failure
mechanism, system structure and so on. For
the multi-state systems and phased-mission

systems, the situation even more complex.
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Generate a system model Petri Net model just for a simple component
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BDD model just for a simple system with six components
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Generate a system model

We have a dream!

« Can we generate a model
automatically?
e Can we get the failure

path of the system

automatically?
The firststep: i |
We need to draw a map! ““‘ ﬁ%fii -/

W@ 1
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FST Models for Failure Mechanism
Dependence
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2.1 Competition

Every possibility of the failure is

M1 ——o F shown in a failure scenario tree,
which means the FST can draw all
possible path from very beginning
to the very end (failure or some

— certain event). Such characteristic

M

—oO F IS the reason that the FST can be
the base of automatic modelling.

n

Failure Mechanism Tree Failure Scenario Tree

Failure probability of the system

(‘;\—> failure distribution
t

F(t) =1- 1_[ []_ — j fl(o.) do_] function of Mi
i=1 0
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2.2 Trigger

o

« Before C,, just M,

« AfterC, M, +{M,...M_}
then compete

 — + Inthe FST, A is like a

M —oOF switch:
C1 happens — turn on
Trigger Event M, ——oF C1 not happen — turn off
Failure Mechanism Tree Failure Scenario Tree
C
Failure probability of the system / Trigger Time
t n t—Tc
F(t) =1— [1 —j £.(0) da“_”1 —f £.(0) da]
0 P17 0
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2.3 Acceleration and Inhibition

Ml IM | [—©F

Trigger Event

Failure Mechanism Tree Failure Scenario Tree

Failure probability of the system > the time of the change

n t—Tc
F(t) =1- 1_[ [1 - j fri(U) dU] failure distribution function
i=1 0

of M. after acceleration or
inhibition
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2.4 Accumulation

Accumulating Rule:
~—> the damage threshold of system
Xen the unit damage of system

AX\/ )

» o— M,A...AM_—oF AX=Zn:/1iﬁXi _ %:Zn:ﬂ

t:
i=1 1=1 L
Xen the unit damage due to M,

the failure time due to M; | & |= A_Xl a scaling factor of M;

the failure time of the system ( —

Failure Mechanism Tree Failure Scenario Tree

Failure probability of the system
F(t) =P




Part 3 PSAM 14

FST Models for Multi-state Systems
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3.1 Time Order FST + State

Stage 1 Stage 2

}— Stage 1 _'7 Stage 2 4‘ mm

A-1

50%

a»

time

* The Time Order FST is used to generate model

for multi-state components.
M, OA-2 « Aswitch between two states refers to a stage.
M, —o0A-3 (3 states — 2 stages)

« The terminal event represent multiple states,

rather than just one result (like ‘failure’ in the
M [—oA-3 binary system)
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3.2 Fault Order FST

Fault order FST is used on the level of component and subsystem, which
means the event in the FST is the state of the component, rather than the

failure mechanism dependence.
series parallel

A B C -
—a—s— gk

* three components here

* three states per component

1. operation (X-1)

2. degradation (X-2) yaun A —
3. fault (X-3) k/n — 2/3 B
X:A,BorC

( or®) three-state systems N— C —
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3.2 Fault Order FST

series — A— B —
O o S-1
A-2 o S-2
B-2 —0 S-2
B-3 ——o S-3
A_3 ................. \ ................... o) S_3

The state of B is unimportant

Only the change of the state will be
shown in the FST, in order to
condense the size of the FST.

Fault (or state-change) order of the
components needs to be determined
before drawing the Fault Order FST.

A-1 N B-2, A-1 N B-3, impossible

The relationship between the state of
the system and its components needs
to be determined.

S-1: A-1 N B-1
S-2: A-2 N B-1 or A-2 N B-2
S-3: A-2 N B-3 or A-3
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| 3.2 Fault Order FST | 2/3 system
parallel o 0 S-1
O o S-1 A-2 O S-1
B-2 |-, 0S-2

A-2 o S-1
B-3 0S-2
B2 052 C2 |—os2
B-3 o S-2 C-3 —o0S-3
A-3 O S-1
AS 0 > B-2 0S-2
B-2 —©0 S-2 C-2 0 S-2
C-3 —o0S-3

B-3 —o S-3
B-3 |rrererereeenmnannnnnnanen: 0 S-3
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FST Models for Phased-mission
Systems
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4.1 Event Order FST

——

PSAM 14 [

Event order FST is also called event order scenario tree (EOST).

a mission with two phases:

— Phase 3

These phases in a
mission enjoy a

certain order. /

/,ﬁ

b of

Y
O
¥
N

Cliy, b

Phase 1
+axi

ﬁ —ﬁ | take off

Cruise

» ——

o

the event order FST for a mission with two phases:

X-S: succeed

X=F: fail

O

Ph1-S Ph2-S —oMS-S
Ph2-F —oMS-F
=100 [ = S — o MS-F
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4.2 Multi-state EOST

* In terms to a phased-mission multi-state system, it could be under different states in the same
phase or mission.

* The EOST, which shows the binary state, is upgraded into MS-EOST to draw the multiple state.

o Ph1-1 Ph2-1 [———0 MS-1 * Phijor MS-jmeans the system in phase /
or the current mission is at state /
Ph2-2 ——0 MS-2
Ph2-3 b———0 MS-3 MS-1: Ph1-1 N Ph2-1
Ph1-2 Ph2-1 [———0 MS-2 MS-2: Ph1-1 N Ph2-2, Ph1-2 N Ph2-1
Ph2-2 ——0 Ms-2 Ph1-2 N Ph2-2
Ph2-3 ——O MS-3 MS-3: Ph1-1 N Ph2-3, Ph1-2 N Ph2-3
= T S O MS-3 Ph1-3
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Case Study and Conclusion
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5.1 Description

An electrical system, which is regarded as a PM-MSS, is required to perform a mission with
four phases. The performing order and the duration of each phase are shown as:

2000h 3000h 2600h 2400h

Phase 1 —>{ Phase 2 ——> Phase 3 ——»{ Phase 4

Phase 1, 2, 4 Phase 3
/— IC;, M
— V — 2/38 —— IC, — Va— 1IC— IC— 1C——
N—
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5.1 Description
Sys’fim State Definition
Phase 1, 2, 4 Phase 3
State 1 Vsl s_tate 1 and at least two of three All components are in state 1.
ICs are In state 1.
V is in state 2 and no more than one IC
IS in state 3. At least one of the components
State2 Or Visin state 1 and at least one of the is in state 2 and none is in state
two best functioning 1Cs among three 3.
ICs is in state 2.
State 3 V is in state 3 or at least two of three ICs At least one of the components

are in state 3.

IS in state 3.

Mission

All phases are in state 1.

At least one of the phases
IS in state 2 and none is in
state 3.

At least one of the phases
IS in state 3.
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5.1 Description

Failure Mechanism and Correlation

Component Mechanism Correlation VF vibration fatigue

Crack Trigger by shock N
E VE / COMpE ey TF  thermal fatigue

TDDB . TDDB time-dependent dielectric
i y—" Accumulation c N

ompetition
: breakdown

EM /

Creep | NBTl negative bias temperature
IC, Acceleration

EM instability

VF A - : : :
IC, — ceumulation o hetition EM  electrical migration

EM /
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5.2 Modelling Generation S0 Failure Mechanism
Time Order FST for every component V-1 The state of V has never changed,
so neither Crack nor VF has
Component Mechanism Correlation effect on V.
Crack Trigger by shock _ TR
v Competition V-2 Due to the continuing influence

VF / of VF, it is possible that V change
its state from V-1 to V-2.

Phase ] — »<—— Phase2 —»
o 1ase | 1ase 5 V.1 V-3 (1) no Crack
S\ Crack b — — — — — — —— _ o VA3 Base.d <?n tk.le state V-2, the
JAAN continuing influence of VF
VF o V2 can change the state into V-3.
/ 2) Crack occurs.
/ S\\‘ Crack —o V-3 ()
f . No matter when the Crack
VF —o0 V-3 starts, V will change its state

into V-3.
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5.2 Modelling Generation Level

Fault Order FST for each structure
Phase 3

Phase 3

— V —— ICl ] IC2 e IC3 e

State1  All components are in state 1.

o S-1
V-2 o S-2
1C,-2 o S-2 At least one of the components
IC,-2 o S-2 State 2 isin state 2 and none is in state
IC;-2 —o0 S-2 3.
IC;-3 |—o0 S-3
ICy3 === @ 53 State 3 At least one of the components
L N e O 53 is in state 3.

V3 oo o S-3
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5.2 Modelling Generation Level m

o Phl-1 Ph2-1 Ph3-1 Ph4-1 —o MS-1

Multi-state Event Order FST for mission

— Ph4-2 ——©0 MS-2

_Ph4-3—o0 MS-3

Mission — Ph3-2 Ph4-1/2 -0 MS-2

_ Ph4-3|—o0 MS-3

State 1 All phases are in state 1. {Ph3-3| ———————— 0 MS-3
— Ph2-2 Ph3-1/2 L Ph4-1/2 0 MS-2

Ph4-3|—o0 MS-3

State 2 At least one of the phases is in L [pp33l - o MS-3
state 2 and none is in state 3. I e o MS-3

—|Ph1-2 Ph2-1/2 Ph3-1/2 L Ph4-1/2 -0 MS-2

State 3 At least one of the phases is in L Phd-3[—o MS-3
State 3. Ph3-3f-——————— -0 MS-3

L Ph2-3|——————————————— 0 MS-3

S o MS-3
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5.3 Calculating Results

Binary-State and Single-Phase
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The value of reliability of the binary-state condition .
Is larger than that of the multi-state condition.

The probability of state 2 is generally increased first
and then decreased. <not monotone>

The sum of all state probabilities at the same time is

always equal to 1.

State probability
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Multi-State and Single-Phase
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state 1

0
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Life/hour

The state probability curve of a multi-phase system is not
as smooth as that under single-phase condition, and an
inflection point often occurs when phase changed.

« The evaluation of system reliability and state

probability considering multi-state and multi-phase

becomes closer to the engineering practice.
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Thank you for listening!

Question Time!
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