

Probabilistic Safety Assessment and Management 16-21 September 2018 • UCLA Meyer & Renee Luskin Conference Center, Los Angeles, CA

Uncertainty Analysis for Input Parameters of Electrical Cabinet Fire Simulation by Coupling Latin Hypercube Sampling and CFAST

Presented by Changhong PENG University of Science & Technology of China

CONTENTS

Results

Conclusion

Fire risks in nuclear power plants

The safety of reactor core

➤Main control room

control center; operators' lives and facilities' functions

➢Fire modeling

fire risk evaluation tool

Parameter uncertainty for fire modeling uncertainty analysis

Objective:

Based on electrical cabinet fire scenarios in a main control room (MCR), parameter uncertainties were evaluated by coupling Latin Hypercube Sampling and CFAST

Introduction

University of Science and Technology of China

Advantage:

Drastically reduce the number of runs necessary to achieve a reasonably accurate result

Procedure:

- ① split the [0,1] interval into N equiprobable intervals
- 2 propagate via the inverse CDF to the output distribution
- ③ take N standard samples from each interval of the output distribution

Fire Modeling

Fire Modeling

University of Science and Technology of China

Assumptions:

(1) door is assumed to be closed

2 operators is assumed to be between two desks

③ fire source is modeled 0.3 m below top surface of the ignited electrical cabinet

Fire Modeling

University of Science and Technology of China

Heat release rate

Energy released per second

Soot yield

mass of soot produced per unit mass of fuel consumed

Activation temperature

temperature at which detectors activate

Response time index

feature how fast detectors response in fire scenarios

Parameter	Distribution	Parameter1	Parameter2
Heat Release Rate ¹	Gamma	α=0.7	β=216
Soot Yield ²	Gamma	α=2.375	β=0.047
Activation Temperature ³	Normal	μ=80	σ=10
Response Time Index ³	Normal	μ=0.25	σ=0.03

[1] EPRI, NRC-RES. NUREG/CR-6850 EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities Volume 2: Detailed Methodology [R]. U.S. Nuclear Regulatory Commission and Electric Power Research Institute, 2005.

[2] Tom Elicson, Jim Bouchard, Heather Lucek, Bentley Harwood. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities for a DOE Facility Fire PRA [C]. ANS PSA 2011 International Topical Meeting on Probabilistic Safety Assessment and Analysis. Wilmington: ANS, 2011

[3] Jia Jia. Study on Assessment Methodology of Ship Fire survivability [D]. Hefei: University of Science and Technology of China, 2014.

non-suppression probability is an estimate of the overall likelihood that given a fire scenario in the postulated fire ignition source, the damage to the target set will occur before the fire is finally suppressed. It can be calculated by the following equation:

Results

$$NS(t) = e^{-\lambda t}$$

where λ is the suppression rate constant, 0.33/min for the MCR fire. *t* is the time from fire ignition to operators abandoning the MCR.

- Heat release rate and soot yield, the most important factors for fire simulations, can lead to the MCR's inhabitability.
- Statistical results show that abandonment probability is 74% and the 0.9-quantile for complementary cumulative probability curve is around 220s.
- Activation time is heavily affected by activation temperature and response time index.
- Non-suppression probability increases with heat release rate and soot yield increasing.

THANK YOU!

Presented by Changhong PENG