Consideration of the Single Release Location for the Multi-Unit Accidents

<u>PSAM 14, 2018</u> UCLA Meyer & Renee Luskin Conference Center, Los Angeles

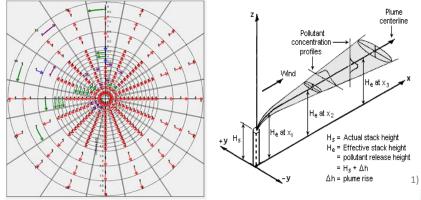
2018. 9. 17 Multi-Unit Risk Research Group, Hanyang University, Seoul, Korea Yein Seo, Hyunae Park, Byeong-Mun Ahn, and Moosung Jae

Contents

- 1. Introduction
- 2. Consideration of Weight
- **3. Application & Results**
- 4. Conclusion

Introduction

Background


Multi–Unit Risk Research Group (MURRG)

Regulatory PSA model & framework development for site risk assessment

Spatial Difference in Multiple Units Issue

Limitation of Current L3 PSA Code for Multi–Unit

• MACCS

- Estimates radioactivity concentration, doses, health risks, and etc.
- Polar coordinate spatial discretization
- Gaussian plume model for atmospheric transport
- Multi-source term ability to reflect the time difference
- Unavailable to consider the spatial difference of the multiple units

Reasonable single release location representing multi-unit

Consideration of Weight

How to find a reasonable single release location

Considerations for single release location

- Location of each unit
- Magnitude and probability of accidents
- Characteristics of the site, and etc.

Weighted Average

$$p_{new} = \frac{\sum_{i} p_i w_i}{\sum_{i} w_i}$$

- $p_{ne\mathrm{M}}\,$: The coordinates (x, y) of the new determined single release location
- p_i : The coordinates (x,Y) of the considered unit i's location
- w_i : The Weight for the unit i

Classification of the Influence Elements

Triplets of Risk

$$R = \langle S_i, P_i, C_i \rangle = \sum P_i \times C_i \ (i = 1, 2, 3, \dots n)$$

 S_i : Accident Scenario of the Event i for the Defined Risk

 P_i : Probability of the Event *i*

 C_i : Consequence of the Event i

	Characteristics of Site and Units	Results of Level 1	Results of Level 2
Event Identification	Location, Wind Speed and Direction, Population, and Structure of On-site -Facilities	_	-
Probability	-	Core Damage Frequency	Large Early Release Frequency & Containment Failure Frequency
Consequence	Power (Electric, Thermal) & Core Inventory	_	Release Fraction

Selection of Weight

Requisites for Weight

- Relatively simple or often used in traditional PSA
- Currently available data
- Not required of further study for data analysis

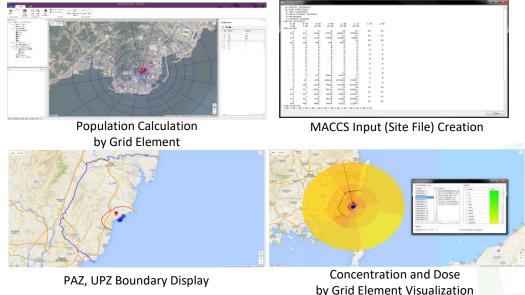
5 Options for Weight

- 1. Simple location average
- 2. Electric power
- 3. Thermal power
- 4. Released inventory
- 5. Population

Application & Results

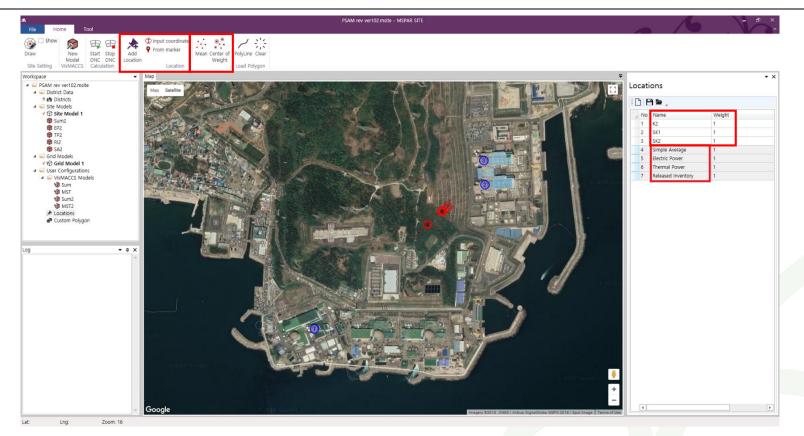
Application to Reference Plants

Reference Plants


- Kori 2 WH600, 650 MWe, 1882 MWth, Closest to Busan
- Shin Kori 1 OPR1000, 1000 MWe, 2825 MWth
- Shin Kori 2 OPR1000, 1000 MWe, 2825 MWth

	Simple Average	Electric Power	Thermal Power	Released Inventory (×e ⁺¹⁸)	Population
K2 (WH600)	1	650	1882	1.25	1
SK1 (OPR1000)	1	1000	2825	2.23	0
SK2 (OPR1000)	1	1000	2825	2.23	0

Development of MSPAR-SITE


MSPAR-SITE

- Designate units' location and weighted average single release location
- Reduce the effort involved in converting the population and geographic characteristics data into the site file
- Visualize site information and the results of MACCS on the map

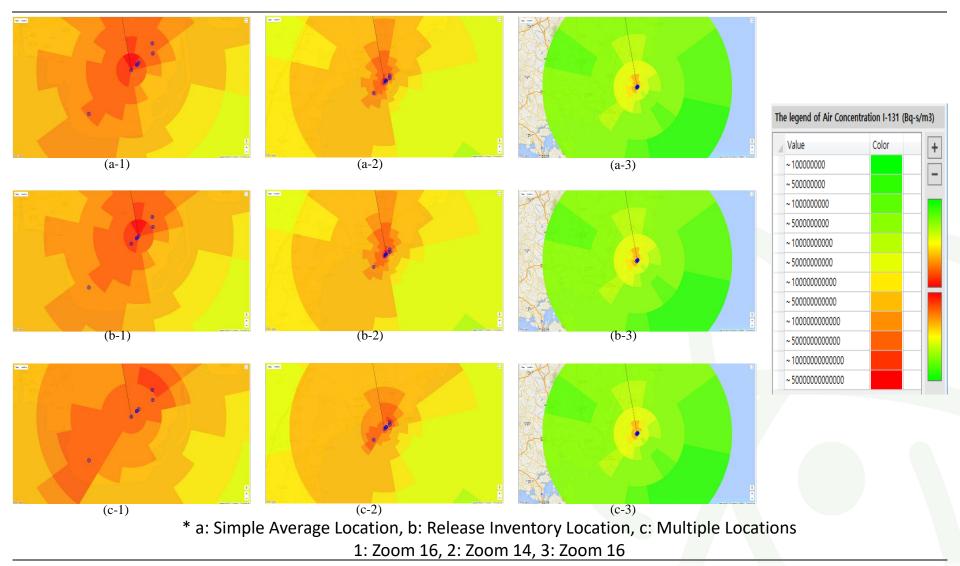
Weight Options in MSPAR-SITE

	К2	SK1	SK2	Simple Average	Electric Power	Thermal Power	Released Inventory	Population
Distance from the simple average (m)	845	343	414	0	99	94	129	845

Results on the Radionuclide Concentration

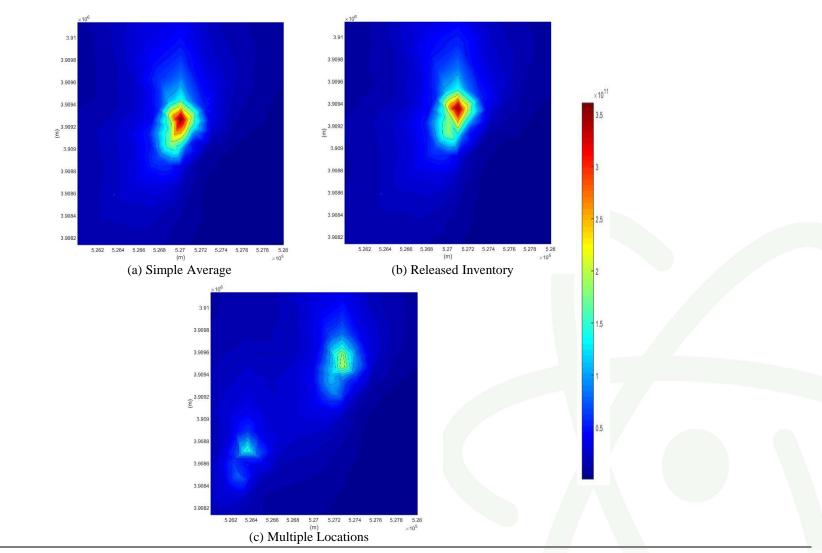
Model Descriptions

- SGTR in 3 reference plants simultaneously
- 2009 Kori site meteorological data
- Source term data derived from previous L2 reports.
- Reflect Korea characteristics as much as possible₂)
- US SOARCA project data applied if the Korean data is scarce.
- Applicate Multi-source term function in WinMACCS
- Draw the output of WinMACCS, the radionuclide concentration for each grid element, using MSPAR-SITE



¹⁾ KHNP, Shin-Kori 1, 2 Probabilistic Safety Assessment Report Part.2

²⁾ Moosung Jae et al. "A Study on MACCS Input Parameters for A Level 3 PSA Model for Regulation Verification", NSTAR-18NS-24, 2018. (KOREAN)


³⁾ US NRC, MACCS Best Practices as Applied in the State-of-the-Art Reactor Consequence Analyses(SOARCA) Project, NUREG/CR-7009, 2017.

Results on the Radionuclide Concentration

Results on the Radionuclide Concentration

Results on the Early Fatality Consequence

Model Descriptions

- Basically same as the model used in the concentration evaluation
- Population data derived by MSPAR-SITE
- Only the emergency phase for 7 days considered
- Health effects risk factors from US SOARCA project
- No emergency response
- Releases from multiple locations not modeled due to the code limitation

Results on the Early Fatality Consequence

Population Weighted Risk Ratio

Radius from 0 km (km)	Simple Average	Electric Power	Thermal Power	Released Inventory	Population
1	1.00	1.05	1.06	1.05	1.48
2	1.00	0.98	0.98	0.97	1.36
3	1.00	1.00	1.00	1.00	0.98
5	1.00	1.00	1.00	1.00	0.98
10	1.00	1.00	1.00	1.00	0.98
20	1.00	1.00	1.00	1.00	0.98
80	1.00	1.00	1.00	1.00	0.98

- All cases except the population option showed variations within 5%
- The results of the population option to the 2km radius were about 36 ~ 48% higher and those from 3km were about 2% smaller

Results on the Early Fatality Consequence

Simple Average VS Population Weighted

Radius	Population V	Veighted Risk	Health Eff	ects Cases	Total Number of Population		
from 0 km (km)	Simple Average	Population	Simple Average	Population	Simple Average	Population	
1	1.00	1.48	1.00	1.00	1.00	0.68	
2	0.88	1.20	1.36	1.35	2.68	2.15	
3	0.41	0.40	32.69	33.54	5.51	5.12	
5	0.41	0.40	32.69	33.54	16.20	16.75	

- The number of health effects cases showed little difference
- the total number of the population to 3km in the population option was less than that in simple average option
- These two results can explain the results of the population weighted risk
- It is expected to be due to the interaction between the population distribution by directions and the meteorological data

Conclusion

Summary

- The objective of this study is to consider a single release location that can represent multiple units for the level 3 multi-unit PSA, based on the current limitation of computational codes.
- we proposed the method using the several options of weighted average, developed MSPAR-SITE, and compared the results on the concentration and early health effect between the options.
- If the **distance between the units is very close**, the use of the single location may not substantially impact on the results
- A simple option considering the number of units and power is recommended.
- The further study of site meteorological characteristics, multi-unit accident scenario and its probability, and population distribution will be needed for more accurate analysis.

Thank you for your attention!