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Motivation

« Continuing increase in city populations

— Expect criticality of transportation infrastructure to
Increase

* Disaster planning, response, and recovery decision
support systems

— Often assume transportation network completely
available

— Unrealistic assumption may lead to suboptimal
strategy
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Static Traffic Assignment

* Previous transportation network vulnerability research
performed in context of static traffic models

« Simplifies assumptions
— Travel times of each link on route added together
to compute travel time
— Inflow and Outflow of link equal

— Congestion occurs if Volume-to-Capacity ratio (V/
C)>1.0



YA um
assS
{ | Dartmouth UNIVERSITY OF MASSACHUSETTS DARTMOUTH

Dynamic Traffic Assignment

 Travel demand function of time
« Explicit modeling of traffic flow dynamics

— Ensures direct link between travel time and
congestion

« Application of dynamic transportation models
— Congestion and vulnerability assessment
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Framework

Static
map
extraction TNTP Compatible TNA Equilibrium
Open Street Map format Algorithm Assignment
Demographic
] and Network Demand TVA Vulnerability
i — Demand data 9 Data Algorithm assessment
] collection
Smartphone app

—
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Deterministic Method

* For every edge e in network ¢

* For every time interval At; in AT
— Disable edge e during interval At;
— Record travel times of vehicles

— Calculate ratio of disrupted travel time with
undisrupted travel time

* Problem: Method is not scalable
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Game Theory

* The analysis of competitive situations (or
situations of conflicts) using mathematical
models

* Involves one or more players
* Actions taken by players called moves
* A set of outcomes for each move

« An amount received for each outcome called
payoff
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Approach

* Two-player mixed strategy stochastic game
* Router vs Tester

* Router — Seeks strategy to distribute traffic
over roads to minimize risk

» Tester — Develops attack strategy to
maximally disrupt smooth flow of traffic

* Perfect knowledge — Strategy of adversary is
Immediately known
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Simulation setup

¢ Transportation network represented as a
graph G(V, E), with V vertices and E edges

» Trips are characterized by demand Dy y(t)

 Simulation divided into k time intervals
AT = < Aty ... Aty >

* Disrupting a link renders it unavailable for
interval At; and is fully restored at At,_
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Mini-max Formulation

. n _ n n _-n
mym mpax u(y,p) = Z Z Ve,iPe,ile,i
{EAT e€E

u™ system vulnerability in the n iteration

Ye: Usage probability of edge e in interval i and iteration n
pe i link attack probability

T, ; heuristic link travel cost

Product is summed over all edges and intervals
to quantify system vulnerability
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Probabilities

Link usage probability

]’n' _ fer,li
“ Yiear Zeer fo
Tester attack probability
Toi X Ve

pn’ —
“ Yiear Leer(Toi X Vo)

fe’fi traffic on edge e, interval i, in nt" iteration
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Link costs

C, if pl =0
CIr=BXx|E|xC; ifpl>0

Link cost
Ce ={

S-expected link cost

sirt=((1—pl) x €5 ) + (Pl x C2)

S-expected link costs with Method of Successive Averages (MSA)
1 1
Tgfl = FS;ffl - (1 - ﬁ) T;l’i

a > 1.0 rate of convergence
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Algorithm Initialization

Require: Road network G with v vertices and e edges
Require: Dynamic traffic demand data profile Dy v (t)
Require: Array of time intervals AT

Require: Maximum iterations N,y

1: Initialize iterationn = 0

2: Initialize system vulnerability u° = 0
3: fori = 1tok do

4. fore = 1to|E| do
S T = Co
6 end for

7: end for

Heuristic travel cost is initialized to free flow travel time
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Algorithm

8: do
9: n=n+1
10: fei = Simulate(G, t¢ ;)
11: fori = 1tok do
12: fore = 1to |E| do
13: Calculate usage probability y;
14: Calculate attack probability pg ;
15: Calculate link vulnerability

Hei =Yei X Pei X Te,
16: Update system vulnerability u™ = u™ + p ;"
17: Update s-Expected link cost Sg;
18: Toit = MSA(SHL )
19: end for
20: end for

21: while (Ju™— u™ 1> ¢€) or (n < N,jqx)

Algorithm terminates if convergence criterion is met
or number of iterations exceeds N, ,,
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lllustration

800
&

* Network Structure
6 Nodes
13 Links
» Speed Limit
* 30 miles/hour
* Time intervals
« Aty =0-1500 sec
« At, = 500 - 1000 sec
« Aty = 1000 - 1500 sec
» 500 vehicles depart node zero
» Destination is node five
e Simulator: SUMO

1200 m

800
m )Cl
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First three iterations for At.

Link Iteration 1 Iteration 2 Iteration 3

N 1 I 1 7 7 7 3 3 3
ame Tor | Yer | Peu To1 Ye1 | Per To1 Ye1 | Pet

L0,1 73.5399] 0.0499 | 0.0528 | 120.1637 | 0.1141 | 0.1380 ] 138.9500 | 0.0188 | 0.0231

L£0,2 73.5399( 0.0717 | 0.0758 | 140.4437 | 0.0000 | 0.0000 | 123.7100 | 0.1017 | 0.1116

L1,0 73.5399] 0.0000 | 0.0000 | 73.5399 | 0.0000 | 0.0000 | 73.5400 | 0.0000 | 0.0000

L1,2 88.5347| 0.0000 | 0.0000 | 88.2923 | 0.0000 | 0.0000 | 88.2900 | 0.0000 | 0.0000

L1,3 59.1946] 0.0374 | 0.0319 | &81.8295 | 0.0794 | 0.0654 | 87.7800 | 0.0220 | 0.0171

L£2,0 73.5399( 0.0000 | 0.0000 |} 73.5399 [ 0.0000 | 0.0000 | 73.5400 [ 0.0000 | 0.0000

12,4 59.1946| 0.0443 | 0.0377 | 85.9972 | 0.0034 | 0.0030 | 79.8300 | 0.0733 [ 0.0520

L3,4 88.5347| 0.0000 | 0.0000 88.5347 | 0.0000 | 0.0000 | 88.5300 [ 0.0000 | 0.0000

L3,5 73.7957]| 0.0458 | 0.0486 | 116.8651 | 0.0892 [ 0.1049 ] 129.3300 [ 0.0451 | 0.0518

L4,2 59.1946] 0.0000 | 0.0000 | 59.1946 | 0.0000 | 0.0000 | 59.1900 [ 0.0000 | 0.0000

L43 88.5347( 0.0000 | 0.0000 | 88.5347 [ 0.0000 | 0.0000 | 88.5300 [ 0.0000 | 0.0000

L4,5 73.7957| 0.0403 | 0.0428 | 111.6604 | 0.0172 [ 0.0193 ] 106.4700 [ 0.0749 | 0.0708

L5,3 73.7957| 0.0000 | 0.0000 | 73.7957 | 0.0000 | 0.0000 | 73.8000 | 0.0000 | 0.0000
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Network Vulnerability (u)

[
1aN

— H
Moving average

_ of u

()
W

[}
N

[}
o

System Vulnerability (u)
[
(-

O

O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Ilteration

Variations in vulnerability decrease after 80" iteration
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Chanae in vulnerability (Au)
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MSA places less emphasis on later strategies, forcing convergence
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Link vulnerability in interval At.
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Iteration

Link level vulnerability oscillates until a stable solution is found
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MSA in interval At

120.055 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Iteration

Crossing link cost at convergence explains oscillation
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Comparison of game-theoretic

and deterministic methods

Link
NEET R T % T (R R T

Name el TT rank sl TT rank wee o TT rank
Ly, 0.0639 15] 1665 11{ 0.1394 12] 1658 141 0.0817 14] 1669 8
Ly, 1.4447 1] 1672 71 1.0896 5] 1664 12 1.2558 2] 1668 9
L, 0.0000 20| 1638 161 0.0000 20| 1638 161 0.0000 20| 1638 16
L, 0.0000 20| 1638 16] 0.0000 20] 1638 16] 0.0000 20] 1638 16
L, 0.0071 191 1672 71 0.0380 17] 1667 10] 0.0390 16] 1769 2
L,, 0.0000 20| 1638 161 0.0000 20| 1638 161 0.0000 20| 1638 16
Ly, 0.4149 711702 51 0.3081 91 1738 3| 0.3085 8| 1817 1
Ly, 0.0000 20| 1638 16] 0.0000| 20| 1638 16] 0.0000 20| 1638 16
Ly 0.1323 13] 1645 15] 0.1475 11| 1659 131 0.1489 10| 1735 4
L, 0.0000 20| 1638 161 0.0000 20| 1638 161 0.0000 20| 1638 16
L, 0.0306 18] 1638 161 0.0000| 20| 1638 16] 0.0000 20| 1638 16
L, 0.8295 6| 1668 91 1.1028 411681 6| 1.1038 311735 4
L, 0.0000 20| 1638 161 0.0000 20| 1638 16 0 20| 1638 16
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Comparison of game-theoretic
and deterministic methods (2)

 Spearman’s rank correlation
— Correlation r, = 0.8882 at convergence
— p-value = 4.63 x 10~1*
« Strong correlation between approaches

* As size of network increases, number of
simulations will decrease
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Comparison of game-theoretic
and deterministic methods (3)
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Correlation never below r, = 0.8 and trend increases
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Conclusion

* Presented a game-theoretic approach to assess
dynamic vulnerability of transportation network

« Considers relative vulnerability of all links and time
Intervals in parallel

* Results indicate that game-theoretic approach
achieves strong correlation to slower deterministic
method
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Future Research

» Address performance and accuracy
challenges to scale game- theoretic
approach to larger networks

» Utilize game-theoretic dynamic
transportation network vulnerability
approach to allocate limited defensive
resources to links at specified times to
mitigate vulnerability most effectively



