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The Issue: PRA Incompleteness 

•  The issue of incompleteness is a persistent challenge in PRA, 
where probability of failure is systematically underestimated 

•  PRA logic models typically represent only known accident 
causes, which can be just a small fraction of the total set of 
causes, especially for new systems 

•  Example: 
Comparison 
between risk 
from known 
failure causes 
and total risk for 
the Space 
Shuttle* 

*NASA/SP-2014-612, NASA System Safety Handbook Vol. 2, November 2014.  
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Diagnosis: PRA Answers the Wrong Question 

•  The question of interest is, “What is the probability of failure?” 
•  The question that PRA answers is, “What is the probability of 

failure from known, modeled causes?” 
•  So, instead of pretending that PRA directly answers the 

question of interest, we can treat PRA results as evidence that 
can be brought to bear on it 

•  How?   Bayes’ Theorem 

          fT(PT|fK(PK)) ∝ fT(PT) · L(fK(PK)|PT) 

Posterior belief about 
the total probability of 
failure (PT) given the 

PRA result (fK(PK)) 

Prior belief 
about the total 
probability of 

failure (PT) 

Likelihood that a given 
total probability of failure 
(PT) would produce the 

observed PRA result (fK(PK)) 

PRA result 
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Quantifying Analysis Completeness 

•  The driving factor behind the likelihood is PRA incompleteness 
•  So, we introduce an analysis completeness factor CA: 

 CA = PK/PT  analysis completeness factor 
•  We don’t know CA precisely, so we characterize it by a 

probability density function, fC(CA) 

CAAnalysis Completeness Factor, CA 

fC(CA) = beta(6.0, 14) 
 

(µ = 0.3, 𝜎 = 0.1) 

Roughly consistent with 
guidelines in the NASA 
System Safety Handbook 
Vol. 2 for new systems 
developed under moderate 
to significant time pressure, 
e.g., Space Shuttle 
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Constructing the Likelihood Function 

•  The strategy used was to first develop the likelihood function 
L(PK|PT, CA), from which L(fK(PK)|PT, CA) can then be constructed 
by treating fK(PK) as the result of a large number n of individual 
samples PKi, each drawn from fK(PK): 

 

•  We impose the boundary condition: 

  L(PK|PT, CA) = fK(PK) when CA = 1 
–  In other words, when we trust the PRA “completely” we believe its 

results 

•  Integrating over fC(CA) yields: 
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Proof of Concept 

•  Given: 
–  Prior belief: fT(PT) = beta(6, 14)    (µ = 0.3, 𝜎 = 0.1) 
–  Analysis completeness: fC(CA) = beta(6.0, 14)   (µ = 0.3, 𝜎 = 0.1) 
–  PRA result: fK(PK) = beta(3.5, 32)    (µ = 0.1, 𝜎 = 0.05) 

•  Posterior belief: fT(PT|fK(PK)) ≈ beta(11,23)        (µ = 0.32, 𝜎 = 0.079) 

Updating of fT(PT) with fK(PK) 

PRA 

Prior belief 

Posterior belief 
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Why Does It Matter? 

•  One reason: Risk Acceptance 
–  Belief that PRA characterizes the total probability of failure, fT(PT), 

can lead to poor risk acceptance decisions 
•  PRA suggests that the risk is acceptable with very high confidence 
•  Bayesian analysis shows that the risk is likely to be unacceptable 

Updating of fT(PT) with fK(PK) 

PRA 

Prior belief 

Posterior belief 

Acceptable Unacceptable 

Risk Tolerability 
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Quantification of Unknown Failure Causes 

•  Given the PRA results and our posterior belief fT(PT|fK(PK)), we 
can infer the probability of failure due to unknown/unmodeled 
causes, fU(PU) 

•  This is a non-trivial 
problem in the general 
case (de-convolution), 
but for PU, PK correlated 
is trivial: 
 PU =(PT–PK)/(1–PK) 
 PU|PK = FU

-1(FK(PK))  
 PK, PT, and PU for Correlated PK, PU 
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The Vision – Universal Incorporation of 
Unknown Failure Causes into PRA 

•  The issue of incompleteness is not limited to the analysis of top 
events and/or end states 

•  It applies to every causally decomposed event in a PRA model 

•  The result is a PRA that: 
–  Is inherently complete at every 

level of decomposition 
–  Fully represents belief about the 

event probabilities in the model 
–  Allocates unknown failure cause 

probabilities into the system 
–  Provides vectors for information 

that is traditionally excluded from 
PRA 

–  Supports analysis use cases that 
traditional PRA does not address 

 What’s not to like? 

Existing 
Logic 

Augmented 
Logic 
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Provides Vectors for Risk-Related Information 

•  The inclusion of prior belief enables historical information, 
expert opinion, similarity analyses, etc., at any and all levels of 
decomposition to be incorporated into the analysis 

•  Belief about analysis completeness, fC(CA), can be developed 
further developed as a function of indicators of completeness, 
e.g.,: 
–  Analysis credibility: NASA-STD-7009A, “Standard for Models & 

Simulations,” includes an M&S Credibility Assessment, which bears on 
fC(CA) 

–  Technology readiness level (TRL): TRL is basically a proxy for 
completeness 

•  Low TRL correlates to high probability of unknown failure causes 

•  The inclusion of unknown failure causes enables testing and 
operational history to be incorporated into the analysis 
–  In particular, operational successes strongly affect fU(PU) despite 

having a negligible effect on fK(PK) 
–  Allows PRA to be used in a general value-of-information (VOI) capacity 
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A Constraint on the Method 

•  It is doubtful that an incomplete event tree would be considered 
acceptable 

∑ P(End Statei) < 1 

•  In other words, event tree 
analysis (ETA) implicitly 
enforces completeness of 
event consequences 

•  Similarly, fault tree analysis 
(FTA) could, or should, 
enforce completeness of 
event causes 

P(System A Fails) < PT 

•  Both are needed for completeness of the analysis  
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Conclusion 
•  This work points a way towards the explicit incorporation of 

unknown failure causes into PRA 
•  The benefits are manifold: 

–  It results in a “complete” risk model that captures the full scope of belief 
concerning system failure probability, at every level of logical 
decomposition  

–  It results in an analysis that is appropriate for risk acceptance decision-
making in a way that “synthetic-only” PRA is not 

–  It allocates “UU risk” throughout the logic model, informing risk 
management decisions such as margin determination by indicating what 
parts of the system may be more likely than others to be harboring 
vulnerabilities 

–  It accommodates test and operational experience, particularly successes 

•  Traditional PRA is recovered under the assumptions that: 
–  The priors are uniform (justifiable as non-informative agnosticism) 
–  The causal decompositions are complete (when is this implicit assumption 

justifiable?) 
•  It answers the right question, “What is the probability of failure?” 


