Assessing and Modelling Building Failures Caused by External Events at Ringhals NPP

Erik Sparre and Carl Sunde, Risk Pilot AB. Cilla Andersson, Ringhals AB

PSAM 14 September 16-21, 2018, Los Angeles

1

Introduction

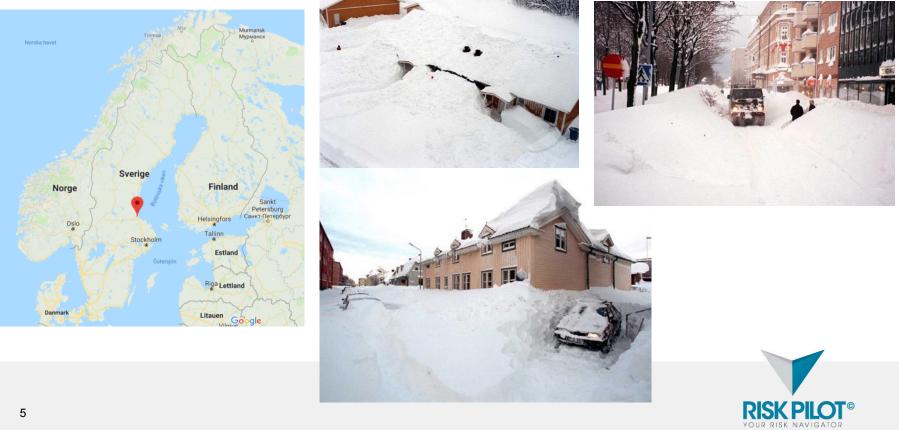
• Authorities in Sweden (SSM): SSMFS 2008:17 §14: "The nuclear reactor shall be dimensioned to withstand natural phenomena and other events that arise outside or inside the facility and which can lead to a radiological accident."

-> New deterministic structural calculations for buildings to verify resistance against loads from external events.

- Fukushima new focus of external events, stress tests
- Update of existing PSA modelling of external events

Approach when modelling External Events in PSA

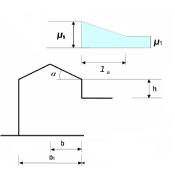
- Low frequent events with high impact/loads (based on deterministic calculations)
 - e.g. extreme snow conditions with impact on building structures
- High frequent event in combination with loss of barriers
 - e.g. normal winter weather, -10 C in combination with loss of heating of intake air



Low frequent events with high impact/loads (based on deterministic calculations)

- Deterministic evaluation of building structures
 - Extreme loads, 10^-4 to 10^-6. Normally 10^-5 per year values are used.
 - <u>Anticipated loads</u>, 1- 10⁻², corresponding to conventional requirements *from National Board of Housing, Building and Planning*. Normally 2*10⁻² values are used.
- Typical meteorological events are analyzed for impact on building structures:
 - Wind
 - Tornado including missiles
 - Ice storm
 - Snow
 - Rain
 - Temperature
 - Earthquake

Snowfall in the town of Gävle, 1998. Depth 180 cm.


Design of Buildings

- Buildings should be designed to withstand extreme loads (1E-5 per year), existing buildings are re-qualified
- · Manual actions sometimes needed to cope with loads
- Calculation for anticipated loads (2E-2 per year) very conservative based on Eurocode and the Swedish adaption by National Board of Housing, Building and Planning. (EKS10).
- Extreme loads more realistic calculations may lead to inconsistent results

Quantification in PSA – Example Snow load

- Building cannot withstand load from snow
 - · Part of roof cannot withstand load from snow
 - Part of roof cannot withstand load from snow pocket formation
- Anticipated load
 - Small exceedance of utilization factor (just above 1)
 - Conservative calculations
 - High probability for manual actions, not so severe weather
- Extreme load
 - High exceedance of utilization factor (above 1.5 or higher)
 - Realistic calculations
 - Low probability for manual actions, severe weather conditions

Utilization factor = Load/resistance of structure (ratio)

Quantification in PSA – Snow load

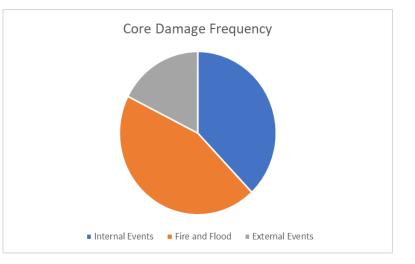
LOAD	No exceedance for snow load	Exceedance for snow load/snow pocket	External grid
Anticipated snow load 2*10^-2/year	No damage to building or components	Probability of damage to buildings ~ 0.5 (conservative calculations) Failure of manual actions to remove snow ~ 0.01 Conditional probability of damage to components ~1.0	Short term loss of all external grids
Extreme snow load 10^-5/year	No damage to building or components	Probability of damage to buildings ~ 1.0 Failure of manual actions to remove snow ~ 0.5 Conditional probability of damage to components ~1.0	Long term loss of all external grids

Issues related to quantification

- Utilization factor
 - < 1 no damage, what about 0,99?
 - > 1 damage, what probability? Depending in e.g. conservatisms in calculations
- Damage to components
 - Damage of building -> damage on components
 - Only loss of components in rooms just below damaged roof structures or will lower rooms also be affected?
- Manual actions
 - How to estimate failure, weather condition important, availability of tools and personnel
 - Meteorological warnings
 - Multi-units affected
- Multiple buildings affected
 - Probability for more than one building
- Long term isolation of site
 - 20-24 h, longer time frame
- Modelling of components
 - Modelling components affected by external events have sometimes been simplified

Quantification in RiskSpectrum®

- Use a Event Tree structure in Risk Spectrum
 - Reduce no of analysis cases

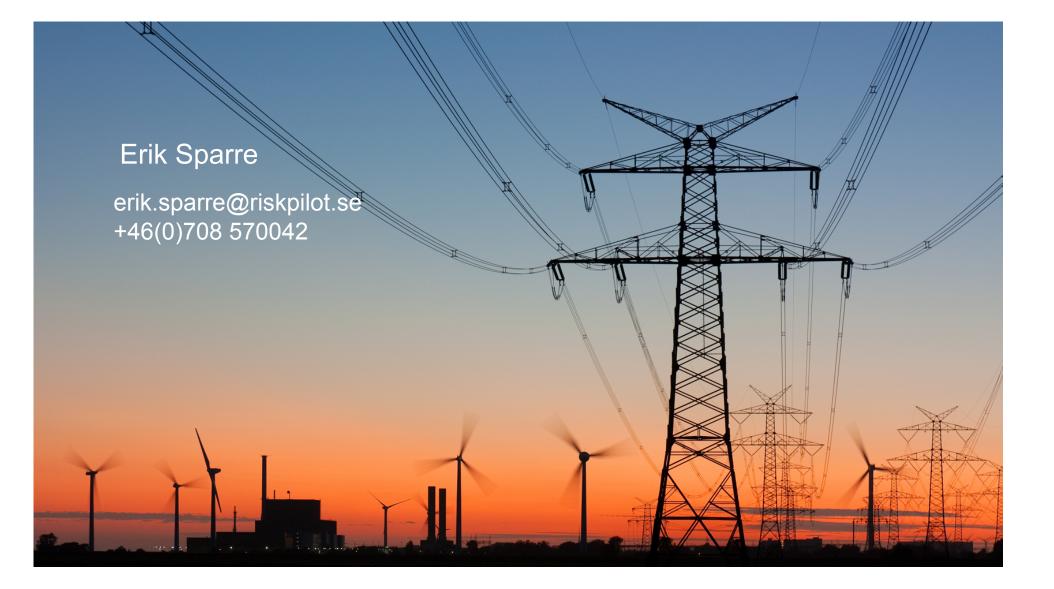

10

- · Possible to do importance and sensitivity analysis for buildings
- However, since high probabilities are included, it's important to validate the results
- An alternative is to use multiple analysis cases rather than ET structure.

Event Tree						
EXTERNAL EVENT, SNOW 100 000 YEARS	LOSS OF CST DUE TO SNOW	LOSS OF RWST DUE TO SNOW				
EE_\$02_1E5	EE_SNOW_CST_1E5	EE_SNOW_RWST_1E5	> 1	Freq.	Conseq. DAM DAM DAM DAM	
						RISK PILOT®

Results

- No major change in total frequency.
- The assumptions are better informed \rightarrow uncertainties have decreased.
- Co-operation with experts in structural mechanics leads to better understanding of the scenarios.



Challenges

- Realistic treatment of conservative structural analysis
- SSC Damage level due to damage building structures
- Manual actions during severe weather conditions
- Multiunit issues common buildings/components

