

Development of an Online Operator Tool to Support Real-Time Emergency Planning Based on the Use of Dynamic Event Trees and Deep Learning Ji Hyun Lee Richard Denning, Alper Yilmaz, Tunc Aldemir

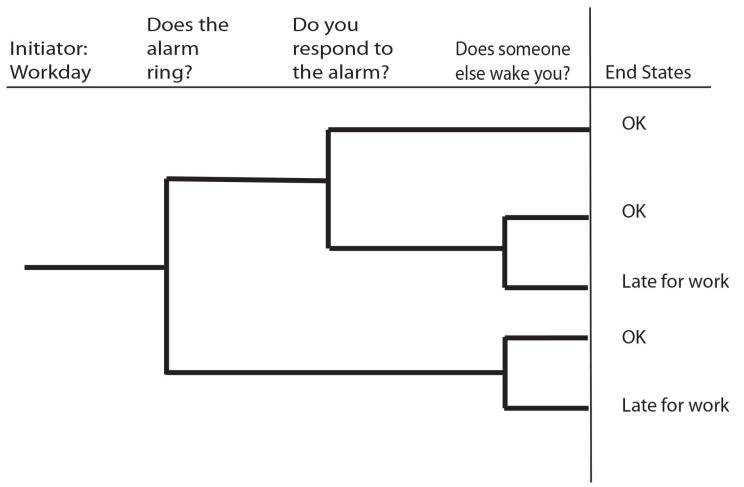
## Outline

- Objectives
- PRA/PSA
- Limitation of static PRA
- Software and accident model
- Deep Learning
- Data preparation
- Results
- Conclusions

## Objectives

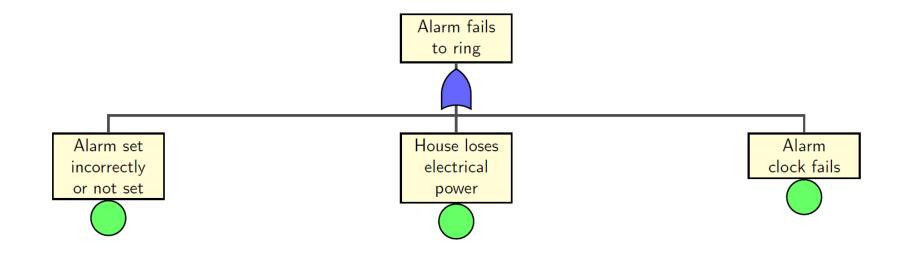
- To support the declaration of site emergency
- To provide technical guidance to the State

#### What is PRA/PSA?


PRA/PSA: Probabilistic Risk/Safety Assessment

- 1. How likely is the core damage? (Level 1 PRA)
- 2. How likely is radioactive material release to the environment? (Level 2 PRA)
- 3. What levels of radiation are people estimated to be exposed to? (Level 3 PRA)

## **Basic PRA**


- Event trees
- Fault trees

#### Event tree [1]





#### Fault tree [1]



## Limitations of basic PRA [2]

- Time of occurrence of each event is not explicitly modeled
- Interaction among hardware/software/ process/human behavior is not explicitly taken into account
- Order of event is preset by the analyst
- Often relies on the use of expert judgement

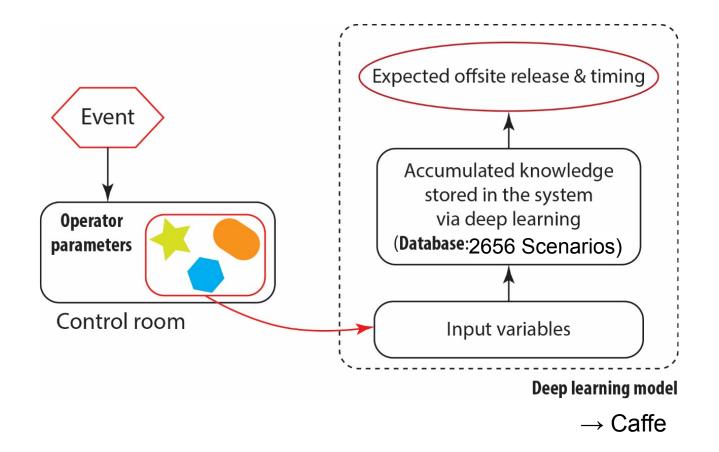
#### Simulation data used in this work

Seamless Level 2/3 probabilistic risk assessment using dynamic event tree (DET) analysis [3]

- Objective to extend the ADAPT methodology to combine Level 2 and Level 3 PRA
- Accident model PWR experiencing Station Black out
  - Total loss of AC power
  - MELCOR model used is based on state-of-theart reactor consequence analysis (SOARCA)



#### Software structure




## Deep Learning

- A subset of AI (Artificial Intelligence)
- Inspired by the field of neural networks, which most closely simulates the thought processes of the human brain
  - Can create the efficient network from largescale unlabeled data sets
  - Applicable to temporally continuous datasets such as video, speech recognition and dynamics which makes it suitable for analyzing temporal characteristics of event evolution in nuclear power plants

#### The Ohio State University

#### Deep Learning model



## Caffe

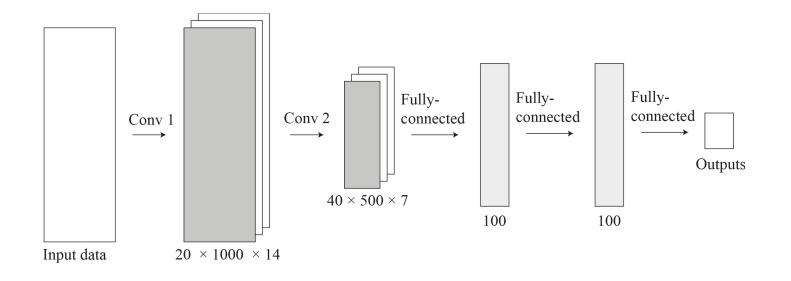
- Open source computer code a framework developed by Berkeley Vision and Learning Center (BVLC)
- A primary focus on pattern recognition of visual objects
- Capable of processing over 60 million images per day with a PC equipped with NVIDIA K40 GPU
- Written in C++ and also developed for Matlab and Python

## Output Data

- Bin Over 10rem
- Bin 0-10rem

#### Data Distribution

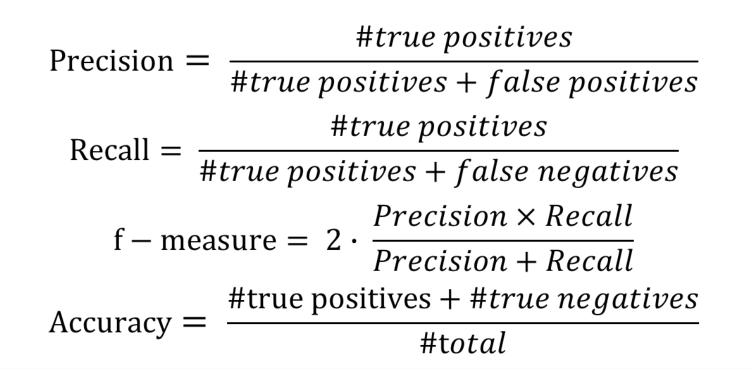
Data distribution of the training, testing, and validation sets (2 miles)


| Train             |             | Те                | est         | Validation             |       |  |
|-------------------|-------------|-------------------|-------------|------------------------|-------|--|
| Bin over<br>10rem | Bin 0-10rem | Bin over<br>10rem | Bin 0-10rem | Only Bin over<br>10rem | Total |  |
| 96                | 90          | 26                | 26          | 2418                   | 2656  |  |

Data distribution of the training, testing, and validation sets (10 miles)

| Train             |             | Τε                | est         | Validation             |       |
|-------------------|-------------|-------------------|-------------|------------------------|-------|
| Bin over<br>10rem | Bin 0-10rem | Bin over<br>10rem | Bin 0-10rem | Only Bin over<br>10rem | Total |
| 450               | 421         | 69                | 69          | 1647                   | 2656  |




#### Network - architecture



# Results (1/4)

FN: False negative TN: True negative FP: False positive TP: True positive

- TP, TN, FP, FN
- Precision, Recall, f-measure, Accuracy

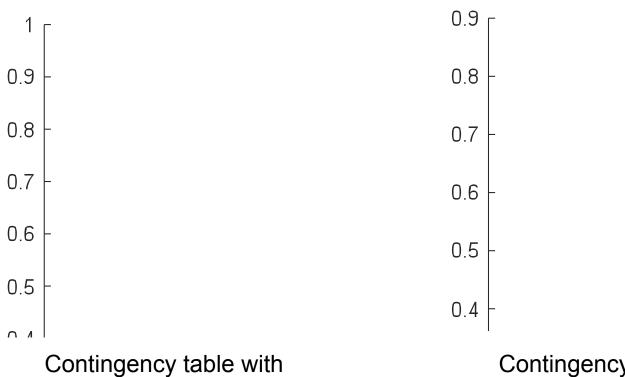


Results (2/4)

FN: False negative TN: True negative FP: False positive TP: True positive

# Contingency table of testing, validation, and testing + validation set

#### **Number of Scenarios**


|                         | FN     |         | F      | FP T    |        | ٢N      | TP     |         |
|-------------------------|--------|---------|--------|---------|--------|---------|--------|---------|
|                         | 2 mile | 10 mile |
| Testing                 | 0      | 8       | 6      | 10      | 20     | 59      | 26     | 61      |
| Validation              | 1      | 143     | 0      | 0       | 0      | 0       | 2417   | 1504    |
| Testing +<br>Validation | 1      | 151     | 6      | 10      | 20     | 59      | 2443   | 1565    |

## Results (3/4)

normalized probability

(2 miles)

FN: False negative TN: True negative FP: False positive TP: True positive



Contingency table with normalized probability (10 miles)

## Results (4/4)

Accuracy, precision, recall, and f-measure of testing and validation set

|                         | Accuracy |         | Prec   | Precision |        | Recall f-measure |        | asure   |
|-------------------------|----------|---------|--------|-----------|--------|------------------|--------|---------|
|                         | 2 mile   | 10 mile | 2 mile | 10 mile   | 2 mile | 10 mile          | 2 mile | 10 mile |
| Testing                 | 0.8846   | 0.8696  | 0.8125 | 0.8592    | 1      | 0.8841           | 0.8966 | 0.8714  |
| Validation              | 0.9996   | 0.9132  | 1      | 1         | 0.9996 | 0.9132           | 0.9998 | 0.9546  |
| Testing +<br>Validation | 0.9972   | 0.9098  | 0.9976 | 0.9937    | 0.9996 | 0.9120           | 0.9986 | 0.9511  |

## Conclusion

- A real-time tool to assist NPP operators in predicting the likelihood of future states of the NPP has been developed
- DL techniques are used to project the radiological outcomes to the public
- The data from the simulation of an accident scenario are used to illustrate the approach

### References

- 1. NRC, U.S., Tutorial on Probabilistic Risk Assessment (*PRA*). Risk-Informed Regulation for Technical Staff.
- Aldemir, T., A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants. *Annals of Nuclear Energy*, 2013.
  52: p. 113-124.
- Osborn, D. (2013). Seamless Level 2 / Level 3 Probabilistic Risk Assessment Using Dynamic Event Tree Analysis. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/